These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 18691084)

  • 1. Monodisperse hyaluronan polymers: synthesis and potential applications.
    DeAngelis PL
    Curr Pharm Biotechnol; 2008 Aug; 9(4):246-8. PubMed ID: 18691084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers.
    Jing W; DeAngelis PL
    J Biol Chem; 2004 Oct; 279(40):42345-9. PubMed ID: 15299014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defined megadalton hyaluronan polymer standards.
    Jing W; Haller FM; Almond A; DeAngelis PL
    Anal Biochem; 2006 Aug; 355(2):183-8. PubMed ID: 16842731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What is special about 200 kDa hyaluronan that activates hyaluronan receptor signaling?
    Weigel PH; Baggenstoss BA
    Glycobiology; 2017 Sep; 27(9):868-877. PubMed ID: 28486620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers.
    Yang J; Cheng F; Yu H; Wang J; Guo Z; Stephanopoulos G
    Biomacromolecules; 2017 Apr; 18(4):1064-1073. PubMed ID: 28192668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight-tailored hyaluronan.
    Schulte S; Doss SS; Jeeva P; Ananth M; Blank LM; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7567-7581. PubMed ID: 31367857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution.
    Čožíková D; Šílová T; Moravcová V; Šmejkalová D; Pepeliaev S; Velebný V; Hermannová M
    Carbohydr Polym; 2017 Mar; 160():134-142. PubMed ID: 28115087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoenzymatic synthesis with distinct Pasteurella heparosan synthases: monodisperse polymers and unnatural structures.
    Sismey-Ragatz AE; Green DE; Otto NJ; Rejzek M; Field RA; DeAngelis PL
    J Biol Chem; 2007 Sep; 282(39):28321-28327. PubMed ID: 17627940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High-Molecular-Weight Hyaluronic Acid.
    Mandawe J; Infanzon B; Eisele A; Zaun H; Kuballa J; Davari MD; Jakob F; Elling L; Schwaneberg U
    Chembiochem; 2018 Jul; 19(13):1414-1423. PubMed ID: 29603528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential one-pot multienzyme synthesis of hyaluronan and its derivative.
    Li S; Wang S; Fu X; Liu XW; Wang PG; Fang J
    Carbohydr Polym; 2017 Dec; 178():221-227. PubMed ID: 29050588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size exclusion chromatography-multiangle laser light scattering analysis of hyaluronan size distributions made by membrane-bound hyaluronan synthase.
    Baggenstoss BA; Weigel PH
    Anal Biochem; 2006 May; 352(2):243-51. PubMed ID: 16476403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant production of hyaluronic acid.
    Brown SH; Pummill PE
    Curr Pharm Biotechnol; 2008 Aug; 9(4):239-41. PubMed ID: 18691082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of a hyaluronan neoglycopolymer by ring-opening metathesis polymerization.
    Iyer S; Rele S; Grasa G; Nolan S; Chaikof EL
    Chem Commun (Camb); 2003 Jul; (13):1518-9. PubMed ID: 12868732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically-modified HA for therapy and regenerative medicine.
    Prestwich GD; Kuo JW
    Curr Pharm Biotechnol; 2008 Aug; 9(4):242-5. PubMed ID: 18691083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of transmembrane domain deletions on hyaluronic acid polymerization of hyaluronan synthase isolated from Streptococcus equisimilis group G.
    Cohan RA; Keramati M; Afshari E; Parsian P; Ahani R; Ebrahimi T
    World J Microbiol Biotechnol; 2023 Jun; 39(9):227. PubMed ID: 37326689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis.
    Kooy FK; Ma M; Beeftink HH; Eggink G; Tramper J; Boeriu CG
    Anal Biochem; 2009 Jan; 384(2):329-36. PubMed ID: 18948072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutation of conserved cysteine residues does not inactivate the Streptococcus pyogenes hyaluronan synthase.
    Heldermon CD; Tlapak-Simmons VL; Baggenstoss BA; Weigel PH
    Glycobiology; 2001 Dec; 11(12):1017-24. PubMed ID: 11805074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight.
    Hoffmann J; Altenbuchner J
    J Appl Microbiol; 2014 Sep; 117(3):663-78. PubMed ID: 24863652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight.
    Jeong E; Shim WY; Kim JH
    J Biotechnol; 2014 Sep; 185():28-36. PubMed ID: 24892811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyaluronan fragments: an information-rich system.
    Stern R; Asari AA; Sugahara KN
    Eur J Cell Biol; 2006 Aug; 85(8):699-715. PubMed ID: 16822580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.