BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18691527)

  • 21. Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b.
    Gunam IB; Yaku Y; Hirano M; Yamamura K; Tomita F; Sone T; Asano K
    J Biosci Bioeng; 2006 Apr; 101(4):322-7. PubMed ID: 16716940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Screening of a triazophos-degrading strain and pathway of its degradation].
    Wang LH; Zhang L; Chen HL
    Sheng Wu Gong Cheng Xue Bao; 2005 Nov; 21(6):954-9. PubMed ID: 16468352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of tris-(2-chloroethyl)-phosphate (TCEP) at environmental concentration on the levels of cell cycle regulatory protein expression in primary cultured rabbit renal proximal tubule cells.
    Ren X; Lee YJ; Han HJ; Kim IS
    Chemosphere; 2008 Dec; 74(1):84-8. PubMed ID: 18952254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of growth phase on the phospholipidic fatty acid composition of two marine bacterial strains in pure and mixed cultures.
    Syakti AD; Mazzella N; Torre F; Acquaviva M; Gilewicz M; Guiliano M; Bertrand JC; Doumenq P
    Res Microbiol; 2006 Jun; 157(5):479-86. PubMed ID: 16380233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester.
    Trably E; Batstone DJ; Christensen N; Patureau D; Schmidt JE
    FEMS Microbiol Ecol; 2008 Nov; 66(2):472-83. PubMed ID: 18754780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete detoxification of tris(2-chloroethyl) phosphate by two bacterial strains: Sphingobium sp. strain TCM1 and Xanthobacter autotrophicus strain GJ10.
    Takahashi S; Miura K; Abe K; Kera Y
    J Biosci Bioeng; 2012 Sep; 114(3):306-11. PubMed ID: 22578591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dimethylphthalate hydrolysis by specific microbial esterase.
    Vega D; Bastide J
    Chemosphere; 2003 Jun; 51(8):663-8. PubMed ID: 12668024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerobic and Anaerobic Biodegradability of Organophosphates in Activated Sludge Derived From Kitchen Garbage Biomass and Agricultural Residues.
    Yang X; Fan D; Gu W; Liu J; Shi L; Zhang Z; Zhou L; Ji G
    Front Bioeng Biotechnol; 2021; 9():649049. PubMed ID: 33681175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial community structure in hexadecane- and naphthalene-enriched gas station soil.
    Baek K; Kim HS
    J Microbiol Biotechnol; 2009 Jul; 19(7):651-7. PubMed ID: 19652511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples.
    Long RM; Lappin-Scott HM; Stevens JR
    Biodegradation; 2009 Jul; 20(4):521-31. PubMed ID: 19132328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.
    Owsianiak M; Szulc A; Chrzanowski Ł; Cyplik P; Bogacki M; Olejnik-Schmidt AK; Heipieper HJ
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):545-53. PubMed ID: 19471922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The aerobic dechlorination activities of two bacterial species isolated from a refuse dumpsite in Nigeria.
    Olaniran AO; Okoh AI; Ajisebutu S; Golyshin P; Babalola GO
    Int Microbiol; 2002 Mar; 5(1):21-4. PubMed ID: 12102232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol.
    Chang HL; Alvarez-Cohen L
    Biotechnol Bioeng; 1995 Mar; 45(5):440-9. PubMed ID: 18623237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel n-alkane-degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium.
    Higashioka Y; Kojima H; Nakagawa T; Sato S; Fukui M
    Biodegradation; 2009 Jun; 20(3):383-90. PubMed ID: 18987782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An atypical phosphodiesterase capable of degrading haloalkyl phosphate diesters from Sphingobium sp. strain TCM1.
    Abe K; Mukai N; Morooka Y; Makino T; Oshima K; Takahashi S; Kera Y
    Sci Rep; 2017 Jun; 7(1):2842. PubMed ID: 28588250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site.
    Sharma A; Thakur IS; Dureja P
    Biodegradation; 2009 Sep; 20(5):643-50. PubMed ID: 19214760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enrichment of microbial cultures able to degrade 1,3-dichloro-2-propanol: a comparison between batch and continuous methods.
    Bastos F; Bessa J; Pacheco CC; De Marco P; Castro PM; Silva M; Jorge RF
    Biodegradation; 2002; 13(3):211-20. PubMed ID: 12498218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH control for enhanced reductive bioremediation of chlorinated solvent source zones.
    Robinson C; Barry DA; McCarty PL; Gerhard JI; Kouznetsova I
    Sci Total Environ; 2009 Aug; 407(16):4560-73. PubMed ID: 19464727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of fluorobiphenyl by Pseudomonas pseudoalcaligenes KF707.
    Murphy CD; Quirke S; Balogun O
    FEMS Microbiol Lett; 2008 Sep; 286(1):45-9. PubMed ID: 18616594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.