These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18691527)

  • 41. Lag period of 14CO2 evolution from dioctyl sulpho[2,3-14C]succinate in relation to adaptation of bacterium, Comamonas terrigena, to dialkyl esters of sulphosuccinate.
    Godocíková J; Ferianc P; Polek B
    Biotechnol Lett; 2004 Oct; 26(19):1497-500. PubMed ID: 15604786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions.
    Dou J; Liu X; Ding A
    J Hazard Mater; 2009 Jun; 165(1-3):325-31. PubMed ID: 19013017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhizobiales as the Key Member in the Synergistic Tris (2-chloroethyl) Phosphate (TCEP) Degradation by Two Bacterial Consortia.
    Liang Y; Zhou X; Wu Y; Wu Y; Gao S; Zeng X; Yu Z
    Water Res; 2022 Jun; 218():118464. PubMed ID: 35461102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of wastewater bacteria involved in the degradation of triclocarban and its non-chlorinated congener.
    Miller TR; Colquhoun DR; Halden RU
    J Hazard Mater; 2010 Nov; 183(1-3):766-72. PubMed ID: 20727675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of genes encoding the 2,4-dichlorophenoxyacetic acid-degrading enzyme from Sphingomonas agrestis 58-1.
    Shimojo M; Kawakami M; Amada K
    J Biosci Bioeng; 2009 Jul; 108(1):56-9. PubMed ID: 19577193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA).
    Sousa DZ; Alves JI; Alves MM; Smidt H; Stams AJ
    Environ Microbiol; 2009 Jan; 11(1):68-80. PubMed ID: 18783383
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic diversity of gamma-hexachlorocyclohexane-degrading sphingomonads isolated from a single experimental field.
    Yamamoto S; Otsuka S; Murakami Y; Nishiyama M; Senoo K
    Lett Appl Microbiol; 2009 Oct; 49(4):472-7. PubMed ID: 19674290
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial degradation of chlorinated benzenes.
    Field JA; Sierra-Alvarez R
    Biodegradation; 2008 Jul; 19(4):463-80. PubMed ID: 17917704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biodegradation of Swainsonine by Acinetobacter calcoaceticus strain YLZZ-1 and its isolation and identification.
    Zhao XH; He X; Wang JN; Song YM; Geng GX; Wang JH
    Biodegradation; 2009 Jun; 20(3):331-8. PubMed ID: 18931977
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of sucrose-glutamic acid Maillard products (SGMPs) degrading bacteria and their metabolites.
    Chandra R; Bharagava RN; Rai V; Singh SK
    Bioresour Technol; 2009 Dec; 100(24):6665-8. PubMed ID: 19665891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid and complete degradation of the herbicide picloram by Lipomyces kononenkoae.
    Sadowsky MJ; Koskinen WC; Bischoff M; Barber BL; Becker JM; Turco RF
    J Agric Food Chem; 2009 Jun; 57(11):4878-82. PubMed ID: 19489626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular characteristics of xenobiotic-degrading sphingomonads.
    Stolz A
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):793-811. PubMed ID: 19002456
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial community analyses of three distinct, liquid cultures that degrade methyl tert-butyl ether using anaerobic metabolism.
    Wei N; Finneran KT
    Biodegradation; 2009 Sep; 20(5):695-707. PubMed ID: 19340592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptomic analysis of phenanthrene degrading Sphingomonas biofilms exposed to environmentally relevant solute and matric stresses.
    Fida TT; Breugelmans P; Lavigne R; Coronado E; Johnson D; Van Der Meer JR; Mayer A; Hofkens J; Springael D
    Commun Agric Appl Biol Sci; 2011; 76(1):69-72. PubMed ID: 21539200
    [No Abstract]   [Full Text] [Related]  

  • 55. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol.
    Qiu X; Wu P; Zhang H; Li M; Yan Z
    Bioresour Technol; 2009 Nov; 100(21):5243-8. PubMed ID: 19540107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Edible oil degradation by using yeast coculture of Rhodotorula pacifica ST3411 and Cryptococcus laurentii ST3412.
    Sugimori D
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):351-7. PubMed ID: 19130049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation by and toxicity to bacteria of chlorinated phenols and benzenes, and hexachlorocyclohexane isomers.
    Lang E; Viedt H
    Microb Ecol; 1994 Jul; 28(1):53-65. PubMed ID: 24190394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simultaneous degradation of organophosphates and 4-substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase.
    Liu Z; Yang C; Jiang H; Mulchandani A; Chen W; Qiao C
    J Agric Food Chem; 2009 Jul; 57(14):6171-7. PubMed ID: 19548671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and characterization of a novel nitrobenzene-degrading bacterium with high salinity tolerance: Micrococcus luteus.
    Zheng C; Qu B; Wang J; Zhou J; Wang J; Lu H
    J Hazard Mater; 2009 Jun; 165(1-3):1152-8. PubMed ID: 19070429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.