BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18691740)

  • 41. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand.
    Wilson NJ; Craw D; Hunter K
    Environ Pollut; 2004 May; 129(2):257-66. PubMed ID: 14987811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER.
    Hüffmeyer N; Klasmeier J; Matthies M
    Sci Total Environ; 2009 Mar; 407(7):2296-305. PubMed ID: 19150732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.
    Mkandawire M; Dudel EG
    Sci Total Environ; 2005 Jan; 336(1-3):81-9. PubMed ID: 15589251
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arsenic binding mechanisms on natural red earth: a potential substrate for pollution control.
    Vithanage M; Senevirathna W; Chandrajith R; Weerasooriya R
    Sci Total Environ; 2007 Jul; 379(2-3):244-8. PubMed ID: 17078998
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana.
    Asante KA; Agusa T; Subramanian A; Ansa-Asare OD; Biney CA; Tanabe S
    Chemosphere; 2007 Jan; 66(8):1513-22. PubMed ID: 17084882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The As-contaminated Elqui river basin: a long lasting perspective (1975-1995) covering the initiation and development of Au-Cu-As mining in the high Andes of northern Chile.
    Oyarzun R; Guevara S; Oyarzún J; Lillo J; Maturana H; Higueras P
    Environ Geochem Health; 2006 Oct; 28(5):431-43. PubMed ID: 16752201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alteration to lake trophic status as a means to control arsenic mobility in a mine-impacted lake.
    Martin AJ; Pedersen TF
    Water Res; 2004 Dec; 38(20):4415-23. PubMed ID: 15556216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mercury speciation in the Valdeazogues River-La Serena Reservoir system: influence of Almadén (Spain) historic mining activities.
    Berzas Nevado JJ; Rodríguez Martín-Doimeadios RC; Moreno MJ
    Sci Total Environ; 2009 Mar; 407(7):2372-82. PubMed ID: 19167027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arsenic mobilization and attenuation by mineral-water interactions: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Jun YS
    J Environ Monit; 2012 Jul; 14(7):1772-88. PubMed ID: 22706181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The fate of arsenic in a river acidified by volcanic activity and an acid thermal water and sedimentation mechanism.
    Ogawa Y; Yamada R; Shinoda K; Inoue C; Tsuchiya N
    Environ Sci Process Impacts; 2014; 16(10):2325-34. PubMed ID: 25110041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China.
    Chen M; Lu G; Guo C; Yang C; Wu J; Huang W; Yee N; Dang Z
    Chemosphere; 2015 Jan; 119():734-743. PubMed ID: 25189685
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contrasting chemical response to artificial acidification of three acid-sensitive streams in Maine, USA.
    Goss HV; Norton SA
    Sci Total Environ; 2008 Oct; 404(2-3):245-52. PubMed ID: 18440052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arsenic mobility and characterization in lakes impacted by gold ore roasting, Yellowknife, NWT, Canada.
    Van Den Berghe MD; Jamieson HE; Palmer MJ
    Environ Pollut; 2018 Mar; 234():630-641. PubMed ID: 29223820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode.
    Salaün P; Planer-Friedrich B; van den Berg CM
    Anal Chim Acta; 2007 Mar; 585(2):312-22. PubMed ID: 17386680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trace metals and their source in the catchment of the high altitude Lake Respomuso, Central Pyrenees.
    Zaharescu DG; Hooda PS; Soler AP; Fernandez J; Burghelea CI
    Sci Total Environ; 2009 May; 407(11):3546-53. PubMed ID: 19275955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Geochemical behavior of an acid drainage system: the case of the Amarillo River, Famatina (La Rioja, Argentina).
    Lecomte KL; Maza SN; Collo G; Sarmiento AM; Depetris PJ
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1630-1647. PubMed ID: 27796971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arsenic stabilization on water treatment residuals by calcium addition.
    Camacho J; Wee HY; Kramer TA; Autenrieth R
    J Hazard Mater; 2009 Jun; 165(1-3):599-603. PubMed ID: 19036504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.