These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
635 related articles for article (PubMed ID: 18691785)
1. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs). Membré JM; Kan-King-Yu D; Blackburn Cde W Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785 [TBL] [Abstract][Full Text] [Related]
2. Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods. Afchain AL; Carlin F; Nguyen-The C; Albert I Int J Food Microbiol; 2008 Nov; 128(1):165-73. PubMed ID: 18805600 [TBL] [Abstract][Full Text] [Related]
3. Quantifying the combined effects of the heating time, the temperature and the recovery medium pH on the regrowth lag time of Bacillus cereus spores after a heat treatment. Gaillard S; Leguérinel I; Savy N; Mafart P Int J Food Microbiol; 2005 Nov; 105(1):53-8. PubMed ID: 16055220 [TBL] [Abstract][Full Text] [Related]
4. Development of a time-to-detect growth model for heat-treated Bacillus cereus spores. Daelman J; Sharma A; Vermeulen A; Uyttendaele M; Devlieghere F; Membré JM Int J Food Microbiol; 2013 Aug; 165(3):231-40. PubMed ID: 23796655 [TBL] [Abstract][Full Text] [Related]
5. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Lindström M; Kiviniemi K; Korkeala H Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785 [TBL] [Abstract][Full Text] [Related]
6. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin. Del Torre M; Stecchini ML; Braconnier A; Peck MW Int J Food Microbiol; 2004 Nov; 96(2):115-31. PubMed ID: 15364467 [TBL] [Abstract][Full Text] [Related]
7. A probabilistic modeling approach in thermal inactivation: estimation of postprocess Bacillus cereus spore prevalence and concentration. Membré JM; Amézquita A; Bassett J; Giavedoni P; Blackburn Cde W; Gorris LG J Food Prot; 2006 Jan; 69(1):118-29. PubMed ID: 16416909 [TBL] [Abstract][Full Text] [Related]
8. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation. Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685 [TBL] [Abstract][Full Text] [Related]
9. Germination and outgrowth of spores of Bacillus cereus group members: diversity and role of germinant receptors. Abee T; Groot MN; Tempelaars M; Zwietering M; Moezelaar R; van der Voort M Food Microbiol; 2011 Apr; 28(2):199-208. PubMed ID: 21315974 [TBL] [Abstract][Full Text] [Related]
10. Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Carlin F; Fricker M; Pielaat A; Heisterkamp S; Shaheen R; Salonen MS; Svensson B; Nguyen-the C; Ehling-Schulz M Int J Food Microbiol; 2006 May; 109(1-2):132-8. PubMed ID: 16503068 [TBL] [Abstract][Full Text] [Related]
11. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll. Byrne B; Dunne G; Bolton DJ Food Microbiol; 2006 Dec; 23(8):803-8. PubMed ID: 16943086 [TBL] [Abstract][Full Text] [Related]
12. [Heat treatment for the control of Bacillus cereus spores in foods]. Tanaka K; Motoi H; Hara-Kudo Y Shokuhin Eiseigaku Zasshi; 2005 Feb; 46(1):1-7. PubMed ID: 15881248 [TBL] [Abstract][Full Text] [Related]
13. Modeling the influence of electron beam irradiation on the heat resistance of Bacillus cereus spores. Valero M; Sarrías JA; Alvarez D; Salmerón MC Food Microbiol; 2006 Jun; 23(4):367-71. PubMed ID: 16943026 [TBL] [Abstract][Full Text] [Related]
14. Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions. Thorsen L; Budde BB; Henrichsen L; Martinussen T; Jakobsen M Int J Food Microbiol; 2009 Aug; 134(1-2):133-9. PubMed ID: 19428136 [TBL] [Abstract][Full Text] [Related]
15. A quantitative microbiological exposure assessment model for Bacillus cereus in REPFEDs. Daelman J; Membré JM; Jacxsens L; Vermeulen A; Devlieghere F; Uyttendaele M Int J Food Microbiol; 2013 Sep; 166(3):433-49. PubMed ID: 24029028 [TBL] [Abstract][Full Text] [Related]
16. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth. Ben Yaghlene H; Leguerinel I; Hamdi M; Mafart P Int J Food Microbiol; 2009 Jul; 133(1-2):48-61. PubMed ID: 19447512 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of Bacillus cereus and Bacillus weihenstephanensis in raw vegetables by application of washing solutions containing enterocin AS-48 alone and in combination with other antimicrobials. Cobo Molinos A; Abriouel H; Lucas López R; Ben Omar N; Valdivia E; Gálvez A Food Microbiol; 2008 Sep; 25(6):762-70. PubMed ID: 18620967 [TBL] [Abstract][Full Text] [Related]
18. Modelling the effect of sub(lethal) heat treatment of Bacillus subtilis spores on germination rate and outgrowth to exponentially growing vegetative cells. Smelt JP; Bos AP; Kort R; Brul S Int J Food Microbiol; 2008 Nov; 128(1):34-40. PubMed ID: 18926580 [TBL] [Abstract][Full Text] [Related]
19. Evaluation and control of the risk of foodborne pathogens and spoilage bacteria present in Awa-Uirou, a sticky rice cake containing sweet red bean paste. Okahisa N; Inatsu Y; Juneja VK; Kawamoto S Foodborne Pathog Dis; 2008 Jun; 5(3):351-9. PubMed ID: 18564913 [TBL] [Abstract][Full Text] [Related]
20. Prediction of time to growth of Listeria monocytogenes using Monte Carlo simulation or regression analysis, influenced by sublethal heat and recovery conditions. Muñoz M; Guevara L; Palop A; Fernández PS Food Microbiol; 2010 Jun; 27(4):468-75. PubMed ID: 20417395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]