These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 18691862)

  • 41. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes.
    Quan C; Li A; Gao N
    Waste Manag; 2009 Aug; 29(8):2353-60. PubMed ID: 19398318
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemical looping combustion: A new low-dioxin energy conversion technology.
    Hua X; Wang W
    J Environ Sci (China); 2015 Jun; 32():135-45. PubMed ID: 26040740
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.
    Maiti S; Dey S; Purakayastha S; Ghosh B
    Bioresour Technol; 2006 Nov; 97(16):2065-70. PubMed ID: 16298126
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study on the comprehensive combustion kinetics of MSW.
    Jin YQ; Yan JH; Cen KF
    J Zhejiang Univ Sci; 2004 Mar; 5(3):283-9. PubMed ID: 14727303
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving the quality of waste-derived char by removing ash.
    Hwang IH; Nakajima D; Matsuto T; Sugimoto T
    Waste Manag; 2008; 28(2):424-34. PubMed ID: 17317141
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics of scrap tyre pyrolysis under vacuum conditions.
    Lopez G; Aguado R; Olazar M; Arabiourrutia M; Bilbao J
    Waste Manag; 2009 Oct; 29(10):2649-55. PubMed ID: 19589669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical study of reaction pathways of dibenzofuran and dibenzo-p-dioxin under reducing conditions.
    Altarawneh M; Dlugogorski BZ; Kennedy EM; Mackie JC
    J Phys Chem A; 2007 Aug; 111(30):7133-40. PubMed ID: 17608456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental and modeling study of the effect of CO and H2 on the urea DeNO(x) process in a 150kW laboratory reactor.
    Javed MT; Nimmo W; Gibbs BM
    Chemosphere; 2008 Jan; 70(6):1059-67. PubMed ID: 17845815
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures.
    Chiang HL; Lin KH; Lai MH; Chen TC; Ma SY
    J Hazard Mater; 2007 Oct; 149(1):151-9. PubMed ID: 17467900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks.
    Wu H; Hanna MA; Jones DD
    Waste Manag Res; 2012 Oct; 30(10):1066-71. PubMed ID: 22767875
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intramolecular distribution of stable nitrogen and oxygen isotopes of nitrous oxide emitted during coal combustion.
    Ogawa M; Yoshida N
    Chemosphere; 2005 Nov; 61(6):877-87. PubMed ID: 15993467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.
    Chen C; Lu Z; Ma X; Long J; Peng Y; Hu L; Lu Q
    Bioresour Technol; 2013 Sep; 144():563-71. PubMed ID: 23890976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism and kinetics for the initial steps of pyrolysis and combustion of 1,6-dicyclopropane-2,4-hexyne from ReaxFF reactive dynamics.
    Liu L; Bai C; Sun H; Goddard WA
    J Phys Chem A; 2011 May; 115(19):4941-50. PubMed ID: 21510658
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Online evolved gas analysis by Thermogravimetric-Mass Spectroscopy for thermal decomposition of biomass and its components under different atmospheres: part I. Lignin.
    Shen D; Hu J; Xiao R; Zhang H; Li S; Gu S
    Bioresour Technol; 2013 Feb; 130():449-56. PubMed ID: 23313692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermochemical conversion of waste tyres-a review.
    Labaki M; Jeguirim M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9962-9992. PubMed ID: 27796970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting the heating value of MSW with a feed forward neural network.
    Dong C; Jin B; Li D
    Waste Manag; 2003; 23(2):103-6. PubMed ID: 12623084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combustion characteristics and gasification kinetics of Brazilian municipal solid waste subjected to different atmospheres by thermogravimetric analysis.
    Thangarasu V; de Oliveira MR; Alves Oliveira LA; Aladawi S; Avila I
    Bioresour Technol; 2024 Jul; 403():130906. PubMed ID: 38806134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M; Trouvé G
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.