BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18692121)

  • 1. Effects of stimulus manipulation on electrophysiological responses in pediatric cochlear implant users. Part I: duration effects.
    Davids T; Valero J; Papsin BC; Harrison RV; Gordon KA
    Hear Res; 2008 Oct; 244(1-2):7-14. PubMed ID: 18692121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of stimulus manipulation on electrophysiological responses of pediatric cochlear implant users. Part II: rate effects.
    Davids T; Valero J; Papsin BC; Harrison RV; Gordon KA
    Hear Res; 2008 Oct; 244(1-2):15-24. PubMed ID: 18692122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of increasing duration of stimulation on the electrically evoked auditory brainstem and middle latency responses in pediatric cochlear implant users.
    Davids T; Valero J; Papsin BC; Harrison RV; Gordon KA
    J Otolaryngol Head Neck Surg; 2008 Aug; 37(4):559-64. PubMed ID: 19128593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Measurement of electrical evoked middle latency response in cochlear implantation operation].
    Wang B; Cao KL; Wang Y; Lu Y
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2012 Mar; 47(3):196-201. PubMed ID: 22805019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal integration of short-duration pulse trains in cochlear implant listeners: Psychophysical and electrophysiological measurements.
    Macherey O; Stahl P; Intartaglia B; Meunier S; Roman S; Schön D
    Hear Res; 2021 Apr; 403():108176. PubMed ID: 33524792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response.
    Firszt JB; Chambers RD; Kraus And N; Reeder RM
    Ear Hear; 2002 Dec; 23(6):502-15. PubMed ID: 12476088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.
    Gransier R; Deprez H; Hofmann M; Moonen M; van Wieringen A; Wouters J
    Hear Res; 2016 May; 335():149-160. PubMed ID: 26994660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of modulating phase duration on electrically evoked auditory brainstem responses obtained during cochlear implantation.
    Bonne NX; Douchement D; Hosana G; Desruelles J; Fayoux P; Ruzza I; Vincent C
    Cochlear Implants Int; 2015 May; 16(3):168-74. PubMed ID: 25167217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
    Thai-Van H; Cozma S; Boutitie F; Disant F; Truy E; Collet L
    Clin Neurophysiol; 2007 Mar; 118(3):676-89. PubMed ID: 17223382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures.
    Firszt JB; Chambers And RD; Kraus N
    Ear Hear; 2002 Dec; 23(6):516-31. PubMed ID: 12476089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory brainstem implant: electrophysiologic responses and subject perception.
    Herrmann BS; Brown MC; Eddington DK; Hancock KE; Lee DJ
    Ear Hear; 2015; 36(3):368-76. PubMed ID: 25437141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of electrically evoked auditory brainstem responses in implanted children with auditory neuropathy/dyssynchrony.
    Runge-Samuelson CL; Drake S; Wackym PA
    Otol Neurotol; 2008 Feb; 29(2):174-8. PubMed ID: 18025997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.
    Bierer JA; Faulkner KF; Tremblay KL
    Ear Hear; 2011; 32(4):436-44. PubMed ID: 21178633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Auditory Pathway by Electrical Auditory Middle Latency Response and Postoperative Hearing Rehabilitation.
    Wang B; Cao K; Wei C; Gao Z; Li H
    J Invest Surg; 2019 Sep; 32(6):542-551. PubMed ID: 29537890
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of cochlear implant use on the electrically evoked middle latency response in children.
    Gordon KA; Papsin BC; Harrison RV
    Hear Res; 2005 Jun; 204(1-2):78-89. PubMed ID: 15925193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A clinical study of electrophysiological correlates of behavioural comfort levels in cochlear implantees.
    Raghunandhan S; Ravikumar A; Kameswaran M; Mandke K; Ranjith R
    Cochlear Implants Int; 2014 May; 15(3):145-60. PubMed ID: 24606544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically evoked auditory brain stem responses (EABR) and middle latency responses (EMLR) obtained from patients with the nucleus multichannel cochlear implant.
    Shallop JK; Beiter AL; Goin DW; Mischke RE
    Ear Hear; 1990 Feb; 11(1):5-15. PubMed ID: 2307303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. II. Comparison of fixed amplitude with amplitude modulated stimuli.
    Tykocinski M; Shepherd RK; Clark GM
    Hear Res; 1997 Oct; 112(1-2):147-57. PubMed ID: 9367237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.