These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 18692221)
1. Use of iron-based technologies in contaminated land and groundwater remediation: a review. Cundy AB; Hopkinson L; Whitby RL Sci Total Environ; 2008 Aug; 400(1-3):42-51. PubMed ID: 18692221 [TBL] [Abstract][Full Text] [Related]
2. Reduction of nitrate by resin-supported nanoscale zero-valent iron. Park H; Park YM; Yoo KM; Lee SH Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454 [TBL] [Abstract][Full Text] [Related]
3. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies. Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133 [TBL] [Abstract][Full Text] [Related]
4. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies. Beak DG; Wilkin RT J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132 [TBL] [Abstract][Full Text] [Related]
5. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Bezbaruah AN; Krajangpan S; Chisholm BJ; Khan E; Bermudez JJ J Hazard Mater; 2009 Jul; 166(2-3):1339-43. PubMed ID: 19178997 [TBL] [Abstract][Full Text] [Related]
6. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426 [TBL] [Abstract][Full Text] [Related]
7. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Bennett P; He F; Zhao D; Aiken B; Feldman L J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350 [TBL] [Abstract][Full Text] [Related]
8. Process optimization in use of zero valent iron nanoparticles for oxidative transformations. Mylon SE; Sun Q; Waite TD Chemosphere; 2010 Sep; 81(1):127-31. PubMed ID: 20619873 [TBL] [Abstract][Full Text] [Related]
9. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Gupta A; Yunus M; Sankararamakrishnan N Chemosphere; 2012 Jan; 86(2):150-5. PubMed ID: 22079302 [TBL] [Abstract][Full Text] [Related]
10. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water. Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207 [TBL] [Abstract][Full Text] [Related]
11. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. Bezbaruah AN; Thompson JM; Chisholm BJ J Environ Sci Health B; 2009 Aug; 44(6):518-24. PubMed ID: 20183057 [TBL] [Abstract][Full Text] [Related]
12. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Klimkova S; Cernik M; Lacinova L; Filip J; Jancik D; Zboril R Chemosphere; 2011 Feb; 82(8):1178-84. PubMed ID: 21193219 [TBL] [Abstract][Full Text] [Related]
13. Removal of atrazine by nanoscale zero valent iron supported on organobentonite. Zhang Y; Li Y; Zheng X Sci Total Environ; 2011 Jan; 409(3):625-30. PubMed ID: 21093019 [TBL] [Abstract][Full Text] [Related]
14. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Gupta A; Chauhan VS; Sankararamakrishnan N Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786 [TBL] [Abstract][Full Text] [Related]
15. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Fu F; Dionysiou DD; Liu H J Hazard Mater; 2014 Feb; 267():194-205. PubMed ID: 24457611 [TBL] [Abstract][Full Text] [Related]
16. Iron and aluminium based adsorption strategies for removing arsenic from water. Giles DE; Mohapatra M; Issa TB; Anand S; Singh P J Environ Manage; 2011 Dec; 92(12):3011-22. PubMed ID: 21871703 [TBL] [Abstract][Full Text] [Related]
17. Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: aggregation, sedimentation, and contaminant desorption. Yin K; Lo IM; Dong H; Rao P; Mak MS J Hazard Mater; 2012 Aug; 227-228():118-25. PubMed ID: 22633881 [TBL] [Abstract][Full Text] [Related]
18. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Crane RA; Dickinson M; Popescu IC; Scott TB Water Res; 2011 Apr; 45(9):2931-42. PubMed ID: 21470652 [TBL] [Abstract][Full Text] [Related]
19. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron. Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490 [TBL] [Abstract][Full Text] [Related]
20. Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Mondal P; Bhowmick S; Chatterjee D; Figoli A; Van der Bruggen B Chemosphere; 2013 Jun; 92(2):157-70. PubMed ID: 23466274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]