BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 18692221)

  • 41. Remediation technologies for heavy metal contaminated groundwater.
    Hashim MA; Mukhopadhyay S; Sahu JN; Sengupta B
    J Environ Manage; 2011 Oct; 92(10):2355-88. PubMed ID: 21708421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent.
    Dickinson M; Scott TB
    J Hazard Mater; 2010 Jun; 178(1-3):171-9. PubMed ID: 20129731
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Review: Technical and policy challenges in deep vadose zone remediation of metals and radionuclides.
    Dresel PE; Wellman DM; Cantrell KJ; Truex MJ
    Environ Sci Technol; 2011 May; 45(10):4207-16. PubMed ID: 21395250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fe0-based alloys for environmental remediation: thinking outside the box.
    Noubactep C; Schöner A
    J Hazard Mater; 2009 Jun; 165(1-3):1210-4. PubMed ID: 18990489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of the chemical reduction of nitrate by zero-valent iron.
    Rodríguez-Maroto JM; García-Herruzo F; García-Rubio A; Gómez-Lahoz C; Vereda-Alonso C
    Chemosphere; 2009 Feb; 74(6):804-9. PubMed ID: 19041116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of barrier materials for removing pollutants from groundwater rich in natural organic matter.
    Kozyatnyk I; Haglund P; Lövgren L; Tysklind M; Gustafsson A; Törneman N
    Water Sci Technol; 2014; 70(1):32-9. PubMed ID: 25026576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater.
    Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM
    Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation.
    Thomas JM; Hernandez R; Kuo CH
    J Hazard Mater; 2008 Jun; 155(1-2):193-8. PubMed ID: 18166266
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater.
    Fjordbøge AS; Baun A; Vastrup T; Kjeldsen P
    Chemosphere; 2013 Jan; 90(2):627-33. PubMed ID: 23021613
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles.
    Su C; Puls RW; Krug TA; Watling MT; O'Hara SK; Quinn JW; Ruiz NE
    Water Res; 2012 Oct; 46(16):5071-84. PubMed ID: 22868086
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Remediation of Ni(2+)-contaminated water using iron powder and steel manufacturing byproducts.
    Jin J; Zhao WR; Xu XH; Hao ZW; Liu Y; He P; Zhou M
    J Environ Sci (China); 2006; 18(3):464-7. PubMed ID: 17294641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles.
    Xiong Z; Zhao D; Pan G
    Water Res; 2007 Aug; 41(15):3497-505. PubMed ID: 17597179
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removing arsenic from groundwater for the developing world--a review.
    Jiang JQ
    Water Sci Technol; 2001; 44(6):89-98. PubMed ID: 11700669
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier.
    Yuan C; Chiang TS
    Chemosphere; 2007 Apr; 67(8):1533-42. PubMed ID: 17267020
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil.
    Sneath HE; Hutchings TR; de Leij FA
    Environ Pollut; 2013 Jul; 178():361-6. PubMed ID: 23603665
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A field comparison of two reductive dechlorination (zero-valent iron and lactate) methods.
    Lacinova L; Kvapil P; Cernik M
    Environ Technol; 2012; 33(7-9):741-9. PubMed ID: 22720397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of inorganic ions on MTBE degradation by Fenton's reagent.
    Siedlecka EM; Wieckowska A; Stepnowski P
    J Hazard Mater; 2007 Aug; 147(1-2):497-502. PubMed ID: 17383092
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites.
    Savina IN; English CJ; Whitby RL; Zheng Y; Leistner A; Mikhalovsky SV; Cundy AB
    J Hazard Mater; 2011 Sep; 192(3):1002-8. PubMed ID: 21715089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zero valent iron remediation of a mixed brominated ethene contaminated groundwater.
    Cohen EL; Patterson BM; McKinley AJ; Prommer H
    J Contam Hydrol; 2009 Jan; 103(3-4):109-18. PubMed ID: 18990465
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.