BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18692360)

  • 1. FIND--a unified framework for neural data analysis.
    Meier R; Egert U; Aertsen A; Nawrot MP
    Neural Netw; 2008 Oct; 21(8):1085-93. PubMed ID: 18692360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative analysis platform for multiple neural spike train data.
    Huang Y; Li X; Li Y; Xu Q; Lu Q; Liu Q
    J Neurosci Methods; 2008 Jul; 172(2):303-11. PubMed ID: 18538855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DATA-MEAns: an open source tool for the classification and management of neural ensemble recordings.
    Bonomini MP; Ferrandez JM; Bolea JA; Fernandez E
    J Neurosci Methods; 2005 Oct; 148(2):137-46. PubMed ID: 15970333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects.
    Truccolo W; Eden UT; Fellows MR; Donoghue JP; Brown EN
    J Neurophysiol; 2005 Feb; 93(2):1074-89. PubMed ID: 15356183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CoCoDat: a database system for organizing and selecting quantitative data on single neurons and neuronal microcircuitry.
    Dyhrfjeld-Johnsen J; Maier J; Schubert D; Staiger J; Luhmann HJ; Stephan KE; Kötter R
    J Neurosci Methods; 2005 Feb; 141(2):291-308. PubMed ID: 15661312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of neuronal spikes using an adaptive threshold based on the max-min spread sorting method.
    Chan HL; Lin MA; Wu T; Lee ST; Tsai YT; Chao PK
    J Neurosci Methods; 2008 Jul; 172(1):112-21. PubMed ID: 18508127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating neuronal activity by SPYCODE multi-channel data analyzer.
    Bologna LL; Pasquale V; Garofalo M; Gandolfo M; Baljon PL; Maccione A; Martinoia S; Chiappalone M
    Neural Netw; 2010 Aug; 23(6):685-97. PubMed ID: 20554151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ERPWAVELAB a toolbox for multi-channel analysis of time-frequency transformed event related potentials.
    Mørup M; Hansen LK; Arnfred SM
    J Neurosci Methods; 2007 Apr; 161(2):361-8. PubMed ID: 17204335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. sigTOOL: A MATLAB-based environment for sharing laboratory-developed software to analyze biological signals.
    Lidierth M
    J Neurosci Methods; 2009 Mar; 178(1):188-96. PubMed ID: 19056423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding movement trajectories through a T-maze using point process filters applied to place field data from rat hippocampal region CA1.
    Huang Y; Brandon MP; Griffin AL; Hasselmo ME; Eden UT
    Neural Comput; 2009 Dec; 21(12):3305-34. PubMed ID: 19764871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
    Delorme A; Makeig S
    J Neurosci Methods; 2004 Mar; 134(1):9-21. PubMed ID: 15102499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo.
    Takahashi S; Sakurai Y
    Neuroscience; 2005; 134(1):301-15. PubMed ID: 15982823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple neural spike train data analysis: state-of-the-art and future challenges.
    Brown EN; Kass RE; Mitra PP
    Nat Neurosci; 2004 May; 7(5):456-61. PubMed ID: 15114358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating spike trains with specified correlation coefficients.
    Macke JH; Berens P; Ecker AS; Tolias AS; Bethge M
    Neural Comput; 2009 Feb; 21(2):397-423. PubMed ID: 19196233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for efficient spike detection in multiunit recordings.
    Borghi T; Gusmeroli R; Spinelli AS; Baranauskas G
    J Neurosci Methods; 2007 Jun; 163(1):176-80. PubMed ID: 17391772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-channel neural data analysis methods and applications.
    Gong HY; Zhang PM
    Sheng Li Xue Bao; 2011 Oct; 63(5):431-41. PubMed ID: 22002234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.