BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18692510)

  • 21. Differential development of body equilibrium among littermates in the newborn rabbit.
    Muciño E; Bautista A; Jiménez I; Martínez-Gómez M; Hudson R
    Dev Psychobiol; 2009 Jan; 51(1):24-33. PubMed ID: 18756446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of locomotor approach on feeding kinematics in the green anole (Anolis carolinensis).
    Montuelle SJ; Daghfous G; Bels VL
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):563-7. PubMed ID: 18661471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling a vertebrate motor system: pattern generation, steering and control of body orientation.
    Grillner S; Kozlov A; Dario P; Stefanini C; Menciassi A; Lansner A; Hellgren Kotaleski J
    Prog Brain Res; 2007; 165():221-34. PubMed ID: 17925249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-weaning isolation promotes food intake and body weight gain in rats that experienced neonatal maternal separation.
    Ryu V; Yoo SB; Kang DW; Lee JH; Jahng JW
    Brain Res; 2009 Oct; 1295():127-34. PubMed ID: 19666012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perinatal asphyxia reduces dentate granule cells and exacerbates methamphetamine-induced hyperlocomotion in adulthood.
    Wakuda T; Matsuzaki H; Suzuki K; Iwata Y; Shinmura C; Suda S; Iwata K; Yamamoto S; Sugihara G; Tsuchiya KJ; Ueki T; Nakamura K; Nakahara D; Takei N; Mori N
    PLoS One; 2008; 3(11):e3648. PubMed ID: 18985150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postural development in rats.
    Lelard T; Jamon M; Gasc JP; Vidal PP
    Exp Neurol; 2006 Nov; 202(1):112-24. PubMed ID: 16814770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
    von Uckermann G; Büschges A
    J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord.
    Cowley KC; Zaporozhets E; Joundi RA; Schmidt BJ
    J Neurophysiol; 2009 Mar; 101(3):1171-8. PubMed ID: 19118107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new measure of hindlimb stepping ability in neonatally spinalized rats.
    Hillyer JE; Joynes RL
    Behav Brain Res; 2009 Sep; 202(2):291-302. PubMed ID: 19376160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of the presence of the father on pup development in California mice (Peromyscus californicus).
    Vieira ML; Brown RE
    Dev Psychobiol; 2003 Apr; 42(3):246-51. PubMed ID: 12621650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The kinematics of locomotion in caecilians: effects of substrate and body shape.
    Herrel A; Measey GJ
    J Exp Zool A Ecol Genet Physiol; 2010 Jun; 313(5):301-9. PubMed ID: 20301183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of locomotion toward home nesting material in neonatal rats.
    Sczerzenie V; Hsiao S
    Dev Psychobiol; 1977 Jul; 10(4):315-21. PubMed ID: 873062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From neuron to behavior: dynamic equation-based prediction of biological processes in motor control.
    Daun-Gruhn S; Büschges A
    Biol Cybern; 2011 Jul; 105(1):71-88. PubMed ID: 21769740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The development of spatial capacity in piloting and dead reckoning by infant rats: use of the huddle as a home base for spatial navigation.
    Loewen I; Wallace DG; Whishaw IQ
    Dev Psychobiol; 2005 May; 46(4):350-61. PubMed ID: 15832318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of long-lasting sensorimotor consequences following neonatal hypoxic-ischemic brain injury in rats: the neuroprotective role of MgSO4.
    Pazaiti A; Soubasi V; Spandou E; Karkavelas G; Georgiou T; Karalis P; Guiba-Tziampiri O
    Neonatology; 2009; 95(1):33-40. PubMed ID: 18787335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model.
    Pham QC; Hicheur H; Arechavaleta G; Laumond JP; Berthoz A
    Eur J Neurosci; 2007 Oct; 26(8):2391-403. PubMed ID: 17953626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of combined dorsolateral and dorsal funicular lesions on sensorimotor behaviour in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2008 Dec; 214(2):229-39. PubMed ID: 18778707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maternal control of the fetal and neonatal rat suprachiasmatic nucleus.
    El-Hennamy R; Mateju K; Bendová Z; Sosniyenko S; Sumová A
    J Biol Rhythms; 2008 Oct; 23(5):435-44. PubMed ID: 18838609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotor behavior of Lagothrix lagothricha and Ateles belzebuth in Yasuní National Park, Ecuador: general patterns and nonsuspensory modes.
    Cant JG; Youlatos D; Rose MD
    J Hum Evol; 2001 Aug; 41(2):141-66. PubMed ID: 11437524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.