BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 18692512)

  • 1. Neural substrates of cognitive inflexibility after chronic cocaine exposure.
    Stalnaker TA; Takahashi Y; Roesch MR; Schoenbaum G
    Neuropharmacology; 2009; 56 Suppl 1(Suppl 1):63-72. PubMed ID: 18692512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making.
    Stalnaker TA; Roesch MR; Franz TM; Burke KA; Schoenbaum G
    Eur J Neurosci; 2006 Nov; 24(9):2643-53. PubMed ID: 17100852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved cognitive flexibility in serotonin transporter knockout rats is unchanged following chronic cocaine self-administration.
    Nonkes LJ; Maes JH; Homberg JR
    Addict Biol; 2013 May; 18(3):434-40. PubMed ID: 21790908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of inflexible behavior in the orbitofrontal-amygdalar circuit after cocaine exposure.
    Stalnaker TA; Roesch MR; Calu DJ; Burke KA; Singh T; Schoenbaum G
    Ann N Y Acad Sci; 2007 Dec; 1121():598-609. PubMed ID: 17846156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D(1) antagonists.
    Ciccocioppo R; Sanna PP; Weiss F
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1976-81. PubMed ID: 11172061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of self-administered cocaine in adolescent and adult male rats on orbitofrontal cortex-related neurocognitive functioning.
    Harvey RC; Dembro KA; Rajagopalan K; Mutebi MM; Kantak KM
    Psychopharmacology (Berl); 2009 Sep; 206(1):61-71. PubMed ID: 19513699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent alterations in cognitive function and prefrontal dopamine D2 receptors following extended, but not limited, access to self-administered cocaine.
    Briand LA; Flagel SB; Garcia-Fuster MJ; Watson SJ; Akil H; Sarter M; Robinson TE
    Neuropsychopharmacology; 2008 Nov; 33(12):2969-80. PubMed ID: 18305460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of self-administered cocaine in adolescent and adult rats on stimulus-reward learning.
    Kerstetter KA; Kantak KM
    Psychopharmacology (Berl); 2007 Oct; 194(3):403-11. PubMed ID: 17609932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking.
    Berglind WJ; Case JM; Parker MP; Fuchs RA; See RE
    Neuroscience; 2006; 137(2):699-706. PubMed ID: 16289883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior.
    See RE; Kruzich PJ; Grimm JW
    Psychopharmacology (Berl); 2001 Mar; 154(3):301-10. PubMed ID: 11351937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The encoding of cocaine vs. natural rewards in the striatum of nonhuman primates: categories with different activations.
    Opris I; Hampson RE; Deadwyler SA
    Neuroscience; 2009 Sep; 163(1):40-54. PubMed ID: 19501630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of a Lateral Orbital Frontal Cortex-Basolateral Amygdala Circuit in Cue-Induced Cocaine-Seeking Behavior.
    Arguello AA; Richardson BD; Hall JL; Wang R; Hodges MA; Mitchell MP; Stuber GD; Rossi DJ; Fuchs RA
    Neuropsychopharmacology; 2017 Feb; 42(3):727-735. PubMed ID: 27534268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.
    Li Y; Ge S; Li N; Chen L; Zhang S; Wang J; Wu H; Wang X; Wang X
    Neuroscience; 2016 Feb; 315():45-69. PubMed ID: 26674058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse.
    Feltenstein MW; See RE
    Neurobiol Learn Mem; 2007 Nov; 88(4):435-44. PubMed ID: 17613253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the basolateral amygdala in stimulus-reward memory and extinction memory consolidation and in subsequent conditioned cued reinstatement of cocaine seeking.
    Fuchs RA; Feltenstein MW; See RE
    Eur J Neurosci; 2006 May; 23(10):2809-13. PubMed ID: 16817884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning.
    Tse MT; Cantor A; Floresco SB
    J Neurosci; 2011 Aug; 31(31):11282-94. PubMed ID: 21813688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine D1-D2 receptor heteromer expression in key brain regions of rat and higher species: Upregulation in rat striatum after cocaine administration.
    Hasbi A; Sivasubramanian M; Milenkovic M; Komarek K; Madras BK; George SR
    Neurobiol Dis; 2020 Sep; 143():105017. PubMed ID: 32679312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory.
    Alaghband Y; O'Dell SJ; Azarnia S; Khalaj AJ; Guzowski JF; Marshall JF
    Neurobiol Learn Mem; 2014 Dec; 116():79-89. PubMed ID: 25225165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys.
    Jentsch JD; Olausson P; De La Garza R; Taylor JR
    Neuropsychopharmacology; 2002 Feb; 26(2):183-90. PubMed ID: 11790514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the dorsal subiculum and rostral basolateral amygdala in cocaine cue extinction learning in rats.
    Szalay JJ; Morin ND; Kantak KM
    Eur J Neurosci; 2011 Apr; 33(7):1299-307. PubMed ID: 21255130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.