BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18692861)

  • 1. Classification of chemicals according to mechanism of aquatic toxicity: an evaluation of the implementation of the Verhaar scheme in Toxtree.
    Enoch SJ; Hewitt M; Cronin MT; Azam S; Madden JC
    Chemosphere; 2008 Sep; 73(3):243-8. PubMed ID: 18692861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the Verhaar scheme for predicting acute aquatic toxicity: improving predictions obtained from Toxtree ver. 2.6.
    Ellison CM; Madden JC; Cronin MT; Enoch SJ
    Chemosphere; 2015 Nov; 139():146-54. PubMed ID: 26092094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software.
    Patlewicz G; Jeliazkova N; Safford RJ; Worth AP; Aleksiev B
    SAR QSAR Environ Res; 2008; 19(5-6):495-524. PubMed ID: 18853299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxmatch--a chemical classification and activity prediction tool based on similarity measures.
    Gallegos-Saliner A; Poater A; Jeliazkova N; Patlewicz G; Worth AP
    Regul Toxicol Pharmacol; 2008 Nov; 52(2):77-84. PubMed ID: 18617309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A QSAR for baseline toxicity: validation, domain of application, and prediction.
    Oberg T
    Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of acute toxicity in fish by using QSAR methods and chemical modes of action.
    Lozano S; Lescot E; Halm MP; Lepailleur A; Bureau R; Rault S
    J Enzyme Inhib Med Chem; 2010 Apr; 25(2):195-203. PubMed ID: 19874208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis.
    Aptula AO; Roberts DW; Cronin MT; Schultz TW
    Chem Res Toxicol; 2005 May; 18(5):844-54. PubMed ID: 15892578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis.
    Roberts DW; Schultz TW; Wolf EM; Aptula AO
    Chem Res Toxicol; 2010 Jan; 23(1):228-34. PubMed ID: 19928804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis.
    Enoch SJ; Cronin MT; Schultz TW; Madden JC
    Chemosphere; 2008 Apr; 71(7):1225-32. PubMed ID: 18261763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicity prediction using mechanism- and non-mechanism-based QSARs: a preliminary study.
    Ren S
    Chemosphere; 2003 Dec; 53(9):1053-65. PubMed ID: 14512109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity.
    Aptula AO; Roberts DW
    Chem Res Toxicol; 2006 Aug; 19(8):1097-105. PubMed ID: 16918251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of acute aquatic toxicity in Tetrahymena pyriformis--'Eco-Derek', a knowledge-based system approach.
    Payne MP; Button WG
    SAR QSAR Environ Res; 2013; 24(6):439-60. PubMed ID: 23600431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals.
    Mombelli E; Devillers J
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):731-52. PubMed ID: 21120759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity.
    Zvinavashe E; Murk AJ; Rietjens IM
    Toxicol Lett; 2009 Jan; 184(1):67-72. PubMed ID: 19041378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of Approaches.
    Kienzler A; Barron MG; Belanger SE; Beasley A; Embry MR
    Environ Sci Technol; 2017 Sep; 51(17):10203-10211. PubMed ID: 28759717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of in silico models for predicting LSER molecular parameters and for acute toxicity prediction to fathead minnow (Pimephales promelas).
    Lyakurwa FS; Yang X; Li X; Qiao X; Chen J
    Chemosphere; 2014 Aug; 108():17-25. PubMed ID: 24875907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of chemical reaction mechanistic domains to an ecotoxicity QSAR model, the KAshinhou Tool for Ecotoxicity (KATE).
    Furuhama A; Hasunuma K; Aoki Y; Yoshioka Y; Shiraishi H
    SAR QSAR Environ Res; 2011; 22(5-6):505-23. PubMed ID: 21604231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of categories from structure-activity relationships to allow read-across for risk assessment: toxicity of alpha,beta-unsaturated carbonyl compounds.
    Koleva YK; Madden JC; Cronin MT
    Chem Res Toxicol; 2008 Dec; 21(12):2300-12. PubMed ID: 19053326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.