These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 18692938)

  • 21. Integration of combinatorial chemistry and structure-based drug design.
    Antel J
    Curr Opin Drug Discov Devel; 1999 May; 2(3):224-33. PubMed ID: 19649950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual screening - what does it give us?
    Köppen H
    Curr Opin Drug Discov Devel; 2009 May; 12(3):397-407. PubMed ID: 19396741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compound optimization in early- and late-phase drug discovery: acceptable pharmacokinetic properties utilizing combined physicochemical, in vitro and in vivo screens.
    Caldwell GW
    Curr Opin Drug Discov Devel; 2000 Jan; 3(1):30-41. PubMed ID: 19649835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent progress in fragment-based lead discovery.
    Schulz MN; Hubbard RE
    Curr Opin Pharmacol; 2009 Oct; 9(5):615-21. PubMed ID: 19477685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the Vitotox and RadarScreen assays for the rapid assessment of genotoxicity in the early research phase of drug development.
    Westerink WM; Stevenson JC; Lauwers A; Griffioen G; Horbach GJ; Schoonen WG
    Mutat Res; 2009 May; 676(1-2):113-30. PubMed ID: 19393335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a cell-based assay to quantify the inflammatory potential of test substances and screen compound libraries for anti-cancer drug candidates in a high-throughput format.
    Kozlov SV
    Methods Mol Biol; 2009; 512():159-67. PubMed ID: 19347277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput synthesis of azide libraries suitable for direct "click" chemistry and in situ screening.
    Srinivasan R; Tan LP; Wu H; Yang PY; Kalesh KA; Yao SQ
    Org Biomol Chem; 2009 May; 7(9):1821-8. PubMed ID: 19590777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced HTS hit selection via a local hit rate analysis.
    Posner BA; Xi H; Mills JE
    J Chem Inf Model; 2009 Oct; 49(10):2202-10. PubMed ID: 19795815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Descriptor-free molecular discovery in large libraries by adaptive substituent reordering.
    McAllister SR; Feng XJ; DiMaggio PA; Floudas CA; Rabinowitz JD; Rabitz H
    Bioorg Med Chem Lett; 2008 Nov; 18(22):5967-70. PubMed ID: 18851908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput screening for lead optimization: a rational approach.
    Bajpai M; Adkison KK
    Curr Opin Drug Discov Devel; 2000 Jan; 3(1):63-71. PubMed ID: 19649839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virtual screening of Abl inhibitors from large compound libraries by support vector machines.
    Liu XH; Ma XH; Tan CY; Jiang YY; Go ML; Low BC; Chen YZ
    J Chem Inf Model; 2009 Sep; 49(9):2101-10. PubMed ID: 19689138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro to in vivo concordance of a high throughput assay of bone marrow toxicity across a diverse set of drug candidates.
    Olaharski AJ; Uppal H; Cooper M; Platz S; Zabka TS; Kolaja KL
    Toxicol Lett; 2009 Jul; 188(2):98-103. PubMed ID: 19446241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
    Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A
    J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cell-based adrenaline assay for automated high-throughput activity screening of epoxide hydrolases.
    Kahakeaw D; Reetz MT
    Chem Asian J; 2008 Feb; 3(2):233-8. PubMed ID: 18189250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups.
    Ertl P
    J Chem Inf Comput Sci; 2003; 43(2):374-80. PubMed ID: 12653499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the biological promiscuity of high-throughput screening hits through DFT calculations.
    Curpăn R; Avram S; Vianello R; Bologa C
    Bioorg Med Chem; 2014 Apr; 22(8):2461-8. PubMed ID: 24656802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comment on The Ecstasy and Agony of Assay Interference Compounds.
    Kenny PW
    J Chem Inf Model; 2017 Nov; 57(11):2640-2645. PubMed ID: 29048168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient discovery of responses of proteins to compounds using active learning.
    Kangas JD; Naik AW; Murphy RF
    BMC Bioinformatics; 2014 May; 15():143. PubMed ID: 24884564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry.
    Lipkus AH; Yuan Q; Lucas KA; Funk SA; Bartelt WF; Schenck RJ; Trippe AJ;
    J Org Chem; 2008 Jun; 73(12):4443-51. PubMed ID: 18505297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of platensimycin.
    Tiefenbacher K; Mulzer J
    Angew Chem Int Ed Engl; 2008; 47(14):2548-55. PubMed ID: 18327757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.