These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 18693433)
1. [Surface modification of biodegradable polymer/TCP scaffolds and related research]. Ma X; Hu Y; Wu X; Yan Y; Xiong Z; Lu R; Wang J; Li D; Xu X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):571-7. PubMed ID: 18693433 [TBL] [Abstract][Full Text] [Related]
2. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
3. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
4. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related]
5. Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials. Al-Ahmad A; Wiedmann-Al-Ahmad M; Carvalho C; Lang M; Follo M; Braun G; Wittmer A; Mülhaupt R; Hellwig E J Biomed Mater Res A; 2008 Dec; 87(4):933-43. PubMed ID: 18228269 [TBL] [Abstract][Full Text] [Related]
6. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
7. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630 [TBL] [Abstract][Full Text] [Related]
9. [Repair of the radial defect of rabbit by polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology]. Sun L; Hu YY; Xiong Z; Wang WM; Pan Y Zhonghua Wai Ke Za Zhi; 2005 Apr; 43(8):535-9. PubMed ID: 15938915 [TBL] [Abstract][Full Text] [Related]
10. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
11. [Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction]. Li SY; Zhou M; Lai YX; Geng YM; Cao SS; Chen XM Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov; 51(11):661-666. PubMed ID: 27806758 [No Abstract] [Full Text] [Related]
12. Effects of VEGF loading on scaffold-confined vascularization. Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981 [TBL] [Abstract][Full Text] [Related]
13. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Khojasteh A; Fahimipour F; Eslaminejad MB; Jafarian M; Jahangir S; Bastami F; Tahriri M; Karkhaneh A; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():780-8. PubMed ID: 27612772 [TBL] [Abstract][Full Text] [Related]
14. [The experimental study of biomimetic artificial cartilage fabrication in vitro and ectopic chondrogenesis in vivo]. Ma X; Hu Y; Yan Y; Xiong Z; Lü R; Wang J; Xu X; Li D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):795-9. PubMed ID: 17002110 [TBL] [Abstract][Full Text] [Related]
15. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618 [TBL] [Abstract][Full Text] [Related]
16. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications. Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686 [TBL] [Abstract][Full Text] [Related]
17. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485 [TBL] [Abstract][Full Text] [Related]
18. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763 [TBL] [Abstract][Full Text] [Related]
19. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694 [TBL] [Abstract][Full Text] [Related]
20. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. Shim JH; Moon TS; Yun MJ; Jeon YC; Jeong CM; Cho DW; Huh JB J Mater Sci Mater Med; 2012 Dec; 23(12):2993-3002. PubMed ID: 22960800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]