BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 18693469)

  • 1. [The biocompatibility of carbon nanotubes].
    Sun L; Zhang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):742-6. PubMed ID: 18693469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues.
    Foldvari M; Bagonluri M
    Nanomedicine; 2008 Sep; 4(3):183-200. PubMed ID: 18550450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells.
    Cheng C; Müller KH; Koziol KK; Skepper JN; Midgley PA; Welland ME; Porter AE
    Biomaterials; 2009 Sep; 30(25):4152-60. PubMed ID: 19473699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments.
    Heister E; Lamprecht C; Neves V; Tîlmaciu C; Datas L; Flahaut E; Soula B; Hinterdorfer P; Coley HM; Silva SR; McFadden J
    ACS Nano; 2010 May; 4(5):2615-26. PubMed ID: 20380453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice.
    Kolosnjaj-Tabi J; Hartman KB; Boudjemaa S; Ananta JS; Morgant G; Szwarc H; Wilson LJ; Moussa F
    ACS Nano; 2010 Mar; 4(3):1481-92. PubMed ID: 20175510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets.
    Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F
    Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-walled carbon nanotubes induce T lymphocyte apoptosis.
    Bottini M; Bruckner S; Nika K; Bottini N; Bellucci S; Magrini A; Bergamaschi A; Mustelin T
    Toxicol Lett; 2006 Jan; 160(2):121-6. PubMed ID: 16125885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotubes: biomaterial applications.
    Saito N; Usui Y; Aoki K; Narita N; Shimizu M; Hara K; Ogiwara N; Nakamura K; Ishigaki N; Kato H; Taruta S; Endo M
    Chem Soc Rev; 2009 Jul; 38(7):1897-903. PubMed ID: 19551170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of biocompatible dispersants for carbon nanotube toxicity tests.
    Kim JS; Song KS; Lee JH; Yu IJ
    Arch Toxicol; 2011 Dec; 85(12):1499-508. PubMed ID: 21656221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics.
    Johnston HJ; Hutchison GR; Christensen FM; Peters S; Hankin S; Aschberger K; Stone V
    Nanotoxicology; 2010 Jun; 4(2):207-46. PubMed ID: 20795897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotubes: engineering biomedical applications.
    Gomez-Gualdrón DA; Burgos JC; Yu J; Balbuena PB
    Prog Mol Biol Transl Sci; 2011; 104():175-245. PubMed ID: 22093220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of the adsorption behaviors of plasma proteins on the single-walled carbon nanotubes nonwoven].
    Meng J; Song L; Meng J; Kong H; Wang C; Guo X; Xu H; Xie S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):55-60. PubMed ID: 17333892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Nanotubes and occupational medicine].
    Borrelli I
    G Ital Med Lav Ergon; 2007; 29(3 Suppl):851-2. PubMed ID: 18409997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels.
    MacDonald RA; Voge CM; Kariolis M; Stegemann JP
    Acta Biomater; 2008 Nov; 4(6):1583-92. PubMed ID: 18706876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medium density polyethylene composites with functionalized carbon nanotubes.
    Pulikkathara MX; Kuznetsov OV; Peralta IR; Wei X; Khabashesku VN
    Nanotechnology; 2009 May; 20(19):195602. PubMed ID: 19420641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of bionanocomposite scaffolds comprised of amine-functionalized single-walled carbon nanotubes crosslinked to an acellular porcine tendon.
    Deeken CR; Cozad MJ; Bachman SL; Ramshaw BJ; Grant SA
    J Biomed Mater Res A; 2011 Mar; 96(3):584-94. PubMed ID: 21254390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo biocompatibility testing of functionalized carbon nanotubes.
    Ciofani G; Raffa V; Vittorio O; Cuschieri A; Pizzorusso T; Costa M; Bardi G
    Methods Mol Biol; 2010; 625():67-83. PubMed ID: 20422382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles.
    Ahmed M; Jiang X; Deng Z; Narain R
    Bioconjug Chem; 2009 Nov; 20(11):2017-22. PubMed ID: 19824627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of cellular uptake and cytotoxicity of carbon nanotubes using flow cytometry.
    Al-Jamal KT; Kostarelos K
    Methods Mol Biol; 2010; 625():123-34. PubMed ID: 20422386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.