These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18693732)

  • 1. Polyunsaturated fatty-acid-like trans-enoyl reductases utilized in polyketide biosynthesis.
    Bumpus SB; Magarvey NA; Kelleher NL; Walsh CT; Calderone CT
    J Am Chem Soc; 2008 Sep; 130(35):11614-6. PubMed ID: 18693732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A double-hotdog with a new trick: structure and mechanism of the trans-acyltransferase polyketide synthase enoyl-isomerase.
    Gay DC; Spear PJ; Keatinge-Clay AT
    ACS Chem Biol; 2014 Oct; 9(10):2374-81. PubMed ID: 25089587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal type I polyketide synthases.
    Cox RJ; Simpson TJ
    Methods Enzymol; 2009; 459():49-78. PubMed ID: 19362635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Iterative Module in the Azalomycin F Polyketide Synthase Contains a Switchable Enoylreductase Domain.
    Xu W; Zhai G; Liu Y; Li Y; Shi Y; Hong K; Hong H; Leadlay PF; Deng Z; Sun Y
    Angew Chem Int Ed Engl; 2017 May; 56(20):5503-5506. PubMed ID: 28418225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Insights into the
    Zhang M; Zhang H; Li Q; Gao Y; Guo L; He L; Zang S; Guo X; Huang J; Li L
    J Agric Food Chem; 2021 Feb; 69(7):2316-2324. PubMed ID: 33587627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis.
    Calderone CT; Kowtoniuk WE; Kelleher NL; Walsh CT; Dorrestein PC
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):8977-82. PubMed ID: 16757561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiroketal polyketide formation in Sorangium: identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes.
    Frank B; Knauber J; Steinmetz H; Scharfe M; Blöcker H; Beyer S; Müller R
    Chem Biol; 2007 Feb; 14(2):221-33. PubMed ID: 17317575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glucose limitation and specific mutations in the module 5 enoyl reductase domains in the nystatin and amphotericin polyketide synthases on polyene macrolide biosynthesis.
    Borgos SE; Sletta H; Fjaervik E; Brautaset T; Ellingsen TE; Gulliksen OM; Zotchev SB
    Arch Microbiol; 2006 Apr; 185(3):165-71. PubMed ID: 16416127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-Module Enoylreduction in the Azalomycin F Polyketide Synthase.
    Zhai G; Wang W; Xu W; Sun G; Hu C; Wu X; Cong Z; Deng L; Shi Y; Leadlay PF; Song H; Hong K; Deng Z; Sun Y
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22738-22742. PubMed ID: 32865309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis.
    Heath RJ; Su N; Murphy CK; Rock CO
    J Biol Chem; 2000 Dec; 275(51):40128-33. PubMed ID: 11007778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stereochemistry of complex polyketide biosynthesis by modular polyketide synthases.
    Kwan DH; Schulz F
    Molecules; 2011 Jul; 16(7):6092-115. PubMed ID: 21775938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ketoacylsynthase Domains of a Polyunsaturated Fatty Acid Synthase in Thraustochytrium sp. Strain ATCC 26185 Can Effectively Function as Stand-Alone Enzymes in Escherichia coli.
    Xie X; Meesapyodsuk D; Qiu X
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28213537
    [No Abstract]   [Full Text] [Related]  

  • 13. Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis.
    Lai JR; Koglin A; Walsh CT
    Biochemistry; 2006 Dec; 45(50):14869-79. PubMed ID: 17154525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enzymology of polyether biosynthesis.
    Liu T; Cane DE; Deng Z
    Methods Enzymol; 2009; 459():187-214. PubMed ID: 19362641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peering into the black box of fungal polyketide biosynthesis.
    Weissman KJ
    Chembiochem; 2010 Mar; 11(4):485-8. PubMed ID: 20127928
    [No Abstract]   [Full Text] [Related]  

  • 16. Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis.
    Nakano C; Ozawa H; Akanuma G; Funa N; Horinouchi S
    J Bacteriol; 2009 Aug; 191(15):4916-23. PubMed ID: 19465653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control Mechanism for cis Double-Bond Formation by Polyunsaturated Fatty-Acid Synthases.
    Hayashi S; Satoh Y; Ogasawara Y; Maruyama C; Hamano Y; Ujihara T; Dairi T
    Angew Chem Int Ed Engl; 2019 Feb; 58(8):2326-2330. PubMed ID: 30623559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of polyketides by trans-AT polyketide synthases.
    Piel J
    Nat Prod Rep; 2010 Jul; 27(7):996-1047. PubMed ID: 20464003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the substrate specificity of trans- versus cis-acyltransferases of assembly line polyketide synthases.
    Dunn BJ; Watts KR; Robbins T; Cane DE; Khosla C
    Biochemistry; 2014 Jun; 53(23):3796-806. PubMed ID: 24871074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of the Polyketide Synthase Domains of
    Jia YL; Du F; Nong FT; Li J; Huang PW; Ma W; Gu Y; Sun XM
    J Agric Food Chem; 2023 Feb; 71(5):2446-2454. PubMed ID: 36696156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.