BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18694397)

  • 1. Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context.
    Pillay CS; Hofmeyr JH; Olivier BG; Snoep JL; Rohwer JM
    Biochem J; 2009 Jan; 417(1):269-75. PubMed ID: 18694397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational models as catalysts for investigating redoxin systems.
    Pillay CS; Rohwer JM
    Essays Biochem; 2024 Apr; 68(1):27-39. PubMed ID: 38356400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thioredoxin system and not the Michaelis-Menten equation should be fitted to substrate saturation datasets from the thioredoxin insulin assay.
    Padayachee L; Pillay CS
    Redox Rep; 2016 Jul; 21(4):170-9. PubMed ID: 26102065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of thioredoxin and glutaredoxin target proteins by identifying reversibly oxidized cysteinyl residues.
    Lee HM; Dietz KJ; Hofestädt R
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From top-down to bottom-up: computational modeling approaches for cellular redoxin networks.
    Pillay CS; Hofmeyr JH; Mashamaite LN; Rohwer JM
    Antioxid Redox Signal; 2013 Jun; 18(16):2075-86. PubMed ID: 23249367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.
    Silva GM; Netto LE; Discola KF; Piassa-Filho GM; Pimenta DC; Bárcena JA; Demasi M
    FEBS J; 2008 Jun; 275(11):2942-55. PubMed ID: 18435761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutaredoxins and thioredoxins in plants.
    Meyer Y; Siala W; Bashandy T; Riondet C; Vignols F; Reichheld JP
    Biochim Biophys Acta; 2008 Apr; 1783(4):589-600. PubMed ID: 18047840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique thioredoxin of the parasitic nematode Haemonchus contortus with glutaredoxin activity.
    Sotirchos IM; Hudson AL; Ellis J; Davey MW
    Free Radic Biol Med; 2009 Mar; 46(5):579-85. PubMed ID: 19111609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NrdH-redoxin of Corynebacterium ammoniagenes forms a domain-swapped dimer.
    Stehr M; Lindqvist Y
    Proteins; 2004 May; 55(3):613-9. PubMed ID: 15103625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of translation via reduction by thioredoxin-thioredoxin reductase in Saccharomyces cerevisiae.
    Jun KO; Song CH; Kim YB; An J; Oh JH; Choi SK
    FEBS Lett; 2009 Sep; 583(17):2804-10. PubMed ID: 19622355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the thioredoxin-like activity profile of the glutaredoxin-like NrdH-redoxin from Escherichia coli.
    Stehr M; Schneider G; Aslund F; Holmgren A; Lindqvist Y
    J Biol Chem; 2001 Sep; 276(38):35836-41. PubMed ID: 11441020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology.
    Mashamaite LN; Rohwer JM; Pillay CS
    Biosci Rep; 2015 Feb; 35(1):. PubMed ID: 25514238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin.
    Rouhier N; Gama F; Wingsle G; Gelhaye E; Gans P; Jacquot JP
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1300-8. PubMed ID: 16476584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase.
    Kippner LE; Finn NA; Shukla S; Kemp ML
    BMC Syst Biol; 2011 Oct; 5():164. PubMed ID: 21995976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redux.
    Eckers E; Bien M; Stroobant V; Herrmann JM; Deponte M
    Biochemistry; 2009 Feb; 48(6):1410-23. PubMed ID: 19166312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics analysis of Mycobacterium NrdH-redoxins.
    Leiting WU; Jianping XI
    Microb Pathog; 2010; 48(3-4):97-102. PubMed ID: 20096772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.
    López-Grueso MJ; González-Ojeda R; Requejo-Aguilar R; McDonagh B; Fuentes-Almagro CA; Muntané J; Bárcena JA; Padilla CA
    Redox Biol; 2019 Feb; 21():101049. PubMed ID: 30639960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NrdH-redoxin of Mycobacterium tuberculosis and Corynebacterium glutamicum dimerizes at high protein concentration and exclusively receives electrons from thioredoxin reductase.
    Van Laer K; Dziewulska AM; Fislage M; Wahni K; Hbeddou A; Collet JF; Versées W; Mateos LM; Tamu Dufe V; Messens J
    J Biol Chem; 2013 Mar; 288(11):7942-7955. PubMed ID: 23362277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox regulation of metabolic and signaling pathways by thioredoxin and glutaredoxin in NOS-3 overexpressing hepatoblastoma cells.
    González R; López-Grueso MJ; Muntané J; Bárcena JA; Padilla CA
    Redox Biol; 2015 Dec; 6():122-134. PubMed ID: 26210445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioredoxins and glutaredoxins: unifying elements in redox biology.
    Meyer Y; Buchanan BB; Vignols F; Reichheld JP
    Annu Rev Genet; 2009; 43():335-67. PubMed ID: 19691428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.