These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 1869545)
1. Kinetics and compartmentation of energy metabolism in intact skeletal muscle determined from 18O labeling of metabolite phosphoryls. Zeleznikar RJ; Goldberg ND J Biol Chem; 1991 Aug; 266(23):15110-9. PubMed ID: 1869545 [TBL] [Abstract][Full Text] [Related]
2. Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. Zeleznikar RJ; Heyman RA; Graeff RM; Walseth TF; Dawis SM; Butz EA; Goldberg ND J Biol Chem; 1990 Jan; 265(1):300-11. PubMed ID: 2152922 [TBL] [Abstract][Full Text] [Related]
3. The dynamics of cGMP metabolism in neuroblastoma N1E-115 cells determined by 18O labeling of guanine nucleotide alpha-phosphoryls. Graeff RM; Walseth TF; Goldberg ND Neurochem Res; 1987 Jun; 12(6):551-60. PubMed ID: 2439934 [TBL] [Abstract][Full Text] [Related]
4. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. Zeleznikar RJ; Dzeja PP; Goldberg ND J Biol Chem; 1995 Mar; 270(13):7311-9. PubMed ID: 7706272 [TBL] [Abstract][Full Text] [Related]
5. Magnitude of increase in retinal cGMP metabolic flux determined by 18O incorporation into nucleotide alpha-phosphoryls corresponds with intensity of photic stimulation. Goldberg ND; Ames AA; Gander JE; Walseth TF J Biol Chem; 1983 Aug; 258(15):9213-9. PubMed ID: 6307996 [TBL] [Abstract][Full Text] [Related]
6. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Dzeja PP; Zeleznikar RJ; Goldberg ND Mol Cell Biochem; 1998 Jul; 184(1-2):169-82. PubMed ID: 9746320 [TBL] [Abstract][Full Text] [Related]
7. Adenine and guanine nucleotide metabolism during platelet storage at 22 degrees C. Edenbrandt CM; Murphy S Blood; 1990 Nov; 76(9):1884-92. PubMed ID: 2224137 [TBL] [Abstract][Full Text] [Related]
8. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice. Janssen E; Terzic A; Wieringa B; Dzeja PP J Biol Chem; 2003 Aug; 278(33):30441-9. PubMed ID: 12730234 [TBL] [Abstract][Full Text] [Related]
9. Energy metabolism and adenine nucleotide degradation in twitch-stimulated rat hindlimb during ischemia-reperfusion. Welsh DG; Lindinger MI Am J Physiol; 1993 Apr; 264(4 Pt 1):E655-61. PubMed ID: 8476043 [TBL] [Abstract][Full Text] [Related]
10. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy. Williams JP; Headrick JP Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892 [TBL] [Abstract][Full Text] [Related]
11. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Sahlin K; Gorski J; Edström L Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963 [TBL] [Abstract][Full Text] [Related]
12. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. Nemutlu E; Gupta A; Zhang S; Viqar M; Holmuhamedov E; Terzic A; Jahangir A; Dzeja P PLoS One; 2015; 10(9):e0136556. PubMed ID: 26378442 [TBL] [Abstract][Full Text] [Related]
13. Subcellular compartmentation of guanine nucleotides and functional relationships between the adenine and guanine nucleotide systems in isolated hepatocytes. Kleineke J; Düls C; Söling HD FEBS Lett; 1979 Nov; 107(1):198-202. PubMed ID: 499541 [No Abstract] [Full Text] [Related]
14. Adenosine triphosphate utilization rates and metabolic pool sizes in intact cells measured by transfer of 18O from water. Dawis SM; Walseth TF; Deeg MA; Heyman RA; Graeff RM; Goldberg ND Biophys J; 1989 Jan; 55(1):79-99. PubMed ID: 2930826 [TBL] [Abstract][Full Text] [Related]
15. AMP deamination delays muscle acidification during heavy exercise and hypoxia. Korzeniewski B J Biol Chem; 2006 Feb; 281(6):3057-66. PubMed ID: 16314416 [TBL] [Abstract][Full Text] [Related]
16. Adenylate kinase-catalyzed phosphotransfer in the myocardium : increased contribution in heart failure. Dzeja PP; Vitkevicius KT; Redfield MM; Burnett JC; Terzic A Circ Res; 1999 May; 84(10):1137-43. PubMed ID: 10347088 [TBL] [Abstract][Full Text] [Related]
17. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Beis I; Newsholme EA Biochem J; 1975 Oct; 152(1):23-32. PubMed ID: 1212224 [TBL] [Abstract][Full Text] [Related]
18. Atrial bioenergetic variations in moderate hypoxia: danger or protective defense? Caparrotta L; Poja R; Ragazzi E; Froldi G; Pandolfo L; Prosdocimi M; Fassina G Basic Res Cardiol; 1989; 84(5):449-60. PubMed ID: 2818445 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide metabolism by gastric glands and H(+)-K(+)-ATPase-enriched membranes. Rong Q; Utevskaya O; Ramilo M; Chow DC; Forte JG Am J Physiol; 1998 Jan; 274(1):G103-10. PubMed ID: 9458779 [TBL] [Abstract][Full Text] [Related]
20. Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. Dzeja PP; Zeleznikar RJ; Goldberg ND J Biol Chem; 1996 May; 271(22):12847-51. PubMed ID: 8662747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]