These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 1869574)

  • 41. Platelet adhesion and activation on polyethylene glycol modified polyurethane surfaces. Measurement of cytoplasmic calcium.
    Park KD; Suzuki K; Lee WK; Lee JE; Kim YH; Sakurai Y; Okano T
    ASAIO J; 1996; 42(5):M876-81. PubMed ID: 8945010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characteristics of crosslinked blends of Pellethene and multiblock polyurethanes containing phospholipid.
    Yoo HJ; Kim HD
    Biomaterials; 2005 Jun; 26(16):2877-86. PubMed ID: 15603783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of polyol type on the surface structure of sulfonate-containing polyurethanes.
    Silver JH; Lewis KB; Ratner BD; Cooper SL
    J Biomed Mater Res; 1993 Jun; 27(6):735-45. PubMed ID: 8408103
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 2-methoxyethylacrylate modified polyurethane membrane and its blood compatibility.
    Tian X; Qiu YR
    Prog Biophys Mol Biol; 2019 Nov; 148():39-46. PubMed ID: 29079209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes.
    Han DK; Park KD; Ahn KD; Jeong SY; Kim YH
    J Biomed Mater Res; 1989 Apr; 23(A1 Suppl):87-104. PubMed ID: 2722907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes.
    Zhang T; Song Z; Chen H; Yu X; Jiang Z
    J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers.
    Lee JH; Ju YM; Kim DM
    Biomaterials; 2000 Apr; 21(7):683-91. PubMed ID: 10711965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces.
    Nojiri C; Okano T; Jacobs HA; Park KD; Mohammad SF; Olsen DB; Kim SW
    J Biomed Mater Res; 1990 Sep; 24(9):1151-71. PubMed ID: 2211743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biocompatibility of polysulfone II. Platelet adhesion and cho cell growth.
    Khang G; Jeong BJ; Lee HB; Park JB
    Biomed Mater Eng; 1995; 5(4):259-73. PubMed ID: 8785510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Manufacturing of multi-layered nanofibrous structures composed of polyurethane and poly(ethylene oxide) as potential blood vessel scaffolds.
    Shin JW; Lee YJ; Heo SJ; Park SA; Kim SH; Kim YJ; Kim DH; Shin JW
    J Biomater Sci Polym Ed; 2009; 20(5-6):757-71. PubMed ID: 19323888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physicochemical properties and platelet interactions of segmented polyurethanes containing sulfonate groups in the hard segment.
    Skarja GA; Brash JL
    J Biomed Mater Res; 1997 Mar; 34(4):439-55. PubMed ID: 9054528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photochemical grafting of alpha-propylsulphate-poly(ethylene oxide) on polyurethane surfaces and enhanced antithrombogenic potential.
    Saito N; Nojiri C; Kuroda S; Sakai K
    Biomaterials; 1997 Sep; 18(17):1195-7. PubMed ID: 9259518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Blood compatibility of two novel polyurethane coating materials].
    Yu G; Ji J; Wang D; Feng L; Shen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):184-7. PubMed ID: 15143535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antithrombotic activity of a lumbrokinase immobilized polyurethane surface.
    Ryu GH; Park S; Han DK; Kim YH; Min B
    ASAIO J; 1993; 39(3):M314-8. PubMed ID: 8268550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study.
    Park JH; Park KD; Bae YH
    Biomaterials; 1999 May; 20(10):943-53. PubMed ID: 10353648
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antithrombogenicity of hydrophilic polyurethane-hydrophobic polystyrene IPNs. II. In vitro and ex vivo studies.
    Shin YC; Han DK; Kim YH; Kim SC
    J Biomater Sci Polym Ed; 1994; 6(3):281-95. PubMed ID: 7986781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: adsorption of proteins from human plasma to copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2009 Jul; 90(1):196-204. PubMed ID: 18491394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.