BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18696106)

  • 41. Actin and pollen tube growth.
    Vidali L; Hepler PK
    Protoplasma; 2001; 215(1-4):64-76. PubMed ID: 11732066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reversible protein tyrosine phosphorylation affects pollen germination and pollen tube growth via the actin cytoskeleton.
    Zi H; Xiang Y; Li M; Wang T; Ren H
    Protoplasma; 2007; 230(3-4):183-91. PubMed ID: 17458633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes.
    Kroeger JH; Daher FB; Grant M; Geitmann A
    Biophys J; 2009 Oct; 97(7):1822-31. PubMed ID: 19804712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes.
    Idilli AI; Morandini P; Onelli E; Rodighiero S; Caccianiga M; Moscatelli A
    Mol Plant; 2013 Jul; 6(4):1109-30. PubMed ID: 23770840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips.
    Lan Y; Liu X; Fu Y; Huang S
    PLoS Genet; 2018 Nov; 14(11):e1007789. PubMed ID: 30418966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall.
    Wang H; Zhuang X; Cai Y; Cheung AY; Jiang L
    Plant J; 2013 Nov; 76(3):367-79. PubMed ID: 23906068
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum.
    Sawidis T
    Protoplasma; 2008; 233(1-2):95-106. PubMed ID: 18709476
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Organization of the actin and microtubule cytoskeleton preceding pollen germination : An analysis using cultured pollen protoplasts of Lilium longiflorum.
    Tanaka I; Wakabayashi T
    Planta; 1992 Mar; 186(4):473-82. PubMed ID: 24186776
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules.
    Cai G; Faleri C; Del Casino C; Emons AM; Cresti M
    Plant Physiol; 2011 Mar; 155(3):1169-90. PubMed ID: 21205616
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of CAP1-mediated apical actin polymerization in pollen tubes.
    Jiang Y; Chang M; Lan Y; Huang S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):12084-12093. PubMed ID: 31123151
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily.
    Lovy-Wheeler A; Kunkel JG; Allwood EG; Hussey PJ; Hepler PK
    Plant Cell; 2006 Sep; 18(9):2182-93. PubMed ID: 16920777
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament.
    Masuda T
    Biosystems; 2013 Sep; 113(3):144-8. PubMed ID: 23791790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization.
    Cárdenas L; Lovy-Wheeler A; Kunkel JG; Hepler PK
    Plant Physiol; 2008 Apr; 146(4):1611-21. PubMed ID: 18263780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis.
    Tominaga M; Yokota E; Vidali L; Sonobe S; Hepler PK; Shimmen T
    Planta; 2000 Apr; 210(5):836-43. PubMed ID: 10805457
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of F-actin fluorescent labeling methods in pollen tubes of Lilium davidii.
    Wang L; Liu YM; Li Y
    Plant Cell Rep; 2005 Jul; 24(5):266-70. PubMed ID: 16021524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glycolysis regulates pollen tube polarity via Rho GTPase signaling.
    Chen W; Gong P; Guo J; Li H; Li R; Xing W; Yang Z; Guan Y
    PLoS Genet; 2018 Apr; 14(4):e1007373. PubMed ID: 29702701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and characterization of a Ca2+-dependent actin filament-severing protein from lily pollen.
    Fan X; Hou J; Chen X; Chaudhry F; Staiger CJ; Ren H
    Plant Physiol; 2004 Dec; 136(4):3979-89. PubMed ID: 15557101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin.
    Lazzaro MD; Marom EY; Reddy AS
    Planta; 2013 Sep; 238(3):587-97. PubMed ID: 23784715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube.
    Rounds CM; Hepler PK; Winship LJ
    Plant Physiol; 2014 Sep; 166(1):139-51. PubMed ID: 25037212
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and exploration of pollen tube small proteins encoded by pollination-induced transcripts.
    Huang JC; Chang LC; Wang ML; Guo CL; Chung MC; Jauh GY
    Plant Cell Physiol; 2011 Sep; 52(9):1546-59. PubMed ID: 21771867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.