BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 18696360)

  • 1. Nitric oxide and prostaglandin inhibition during acetylcholine-mediated cutaneous vasodilation in humans.
    Medow MS; Glover JL; Stewart JM
    Microcirculation; 2008 Aug; 15(6):569-79. PubMed ID: 18696360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketorolac alters blood flow during normothermia but not during hyperthermia in middle-aged human skin.
    Holowatz LA; Jennings JD; Lang JA; Kenney WL
    J Appl Physiol (1985); 2009 Oct; 107(4):1121-7. PubMed ID: 19661446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin.
    Kellogg DL; Zhao JL; Coey U; Green JV
    J Appl Physiol (1985); 2005 Feb; 98(2):629-32. PubMed ID: 15649880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic low-dose aspirin therapy attenuates reflex cutaneous vasodilation in middle-aged humans.
    Holowatz LA; Kenney WL
    J Appl Physiol (1985); 2009 Feb; 106(2):500-5. PubMed ID: 19036898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclooxygenase and nitric oxide synthase dependence of cutaneous reactive hyperemia in humans.
    Medow MS; Taneja I; Stewart JM
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H425-32. PubMed ID: 17369458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of protease-activated receptor 2 mediates cutaneous vasodilatation but not sweating: roles of nitric oxide synthase and cyclo-oxygenase.
    Fujii N; McNeely BD; Zhang SY; Abdellaoui YC; Danquah MO; Kenny GP
    Exp Physiol; 2017 Feb; 102(2):265-272. PubMed ID: 27981668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide synthase and cyclooxygenase modulate β-adrenergic cutaneous vasodilatation and sweating in young men.
    Fujii N; McNeely BD; Kenny GP
    J Physiol; 2017 Feb; 595(4):1173-1184. PubMed ID: 27779753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired acetylcholine-induced cutaneous vasodilation in young smokers: roles of nitric oxide and prostanoids.
    Fujii N; Reinke MC; Brunt VE; Minson CT
    Am J Physiol Heart Circ Physiol; 2013 Mar; 304(5):H667-73. PubMed ID: 23316063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex-differences in cholinergic, nicotinic, and β-adrenergic cutaneous vasodilation: Roles of nitric oxide synthase, cyclooxygenase, and K
    Fujii N; McGarr GW; Ghassa R; Schmidt MD; McCormick JJ; Nishiyasu T; Kenny GP
    Microvasc Res; 2020 Sep; 131():104030. PubMed ID: 32531353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of endothelium-derived relaxing factors to control of hindlimb blood flow in the mouse in vivo.
    Fitzgerald SM; Bashari H; Cox JA; Parkington HC; Evans RG
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1072-82. PubMed ID: 17468338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin II type 1 receptor blockade corrects cutaneous nitric oxide deficit in postural tachycardia syndrome.
    Stewart JM; Taneja I; Glover J; Medow MS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H466-73. PubMed ID: 17993594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prostanoids contribute to cutaneous active vasodilation in humans.
    McCord GR; Cracowski JL; Minson CT
    Am J Physiol Regul Integr Comp Physiol; 2006 Sep; 291(3):R596-602. PubMed ID: 16484440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of nitric oxide synthase attenuates cutaneous vasodilation during warm moxibustion-like thermal stimulation in humans.
    Kimura K; Takeuchi H; Yuri K; Wakayama I
    J Altern Complement Med; 2012 Oct; 18(10):965-70. PubMed ID: 22873117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of nitric oxide synthase and cyclooxygenase in leg vasodilation and oxygen consumption during prolonged low-intensity exercise in untrained humans.
    Schrage WG; Wilkins BW; Johnson CP; Eisenach JH; Limberg JK; Dietz NM; Curry TB; Joyner MJ
    J Appl Physiol (1985); 2010 Sep; 109(3):768-77. PubMed ID: 20558755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of endothelium-derived hyperpolarising factor in acetylcholine-mediated vasodilatation in skin.
    Newton DJ; Davies J; Belch JJ; Khan F
    Int Angiol; 2013 Jun; 32(3):312-8. PubMed ID: 23711683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandins do not contribute to the nitric oxide-mediated compensatory vasodilation in hypoperfused exercising muscle.
    Casey DP; Joyner MJ
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H261-8. PubMed ID: 21536852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cutaneous neuronal nitric oxide is specifically decreased in postural tachycardia syndrome.
    Stewart JM; Medow MS; Minson CT; Taneja I
    Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2161-7. PubMed ID: 17660395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agonist-dependent variablity of contributions of nitric oxide and prostaglandins in human skeletal muscle.
    Schrage WG; Dietz NM; Eisenach JH; Joyner MJ
    J Appl Physiol (1985); 2005 Apr; 98(4):1251-7. PubMed ID: 15563630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined inhibition of nitric oxide and vasodilating prostaglandins abolishes forearm vasodilatation to systemic hypoxia in healthy humans.
    Markwald RR; Kirby BS; Crecelius AR; Carlson RE; Voyles WF; Dinenno FA
    J Physiol; 2011 Apr; 589(Pt 8):1979-90. PubMed ID: 21486803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide.
    Trinity JD; Kwon OS; Broxterman RM; Gifford JR; Kithas AC; Hydren JR; Jarrett CL; Shields KL; Bisconti AV; Park SH; Craig JC; Nelson AD; Morgan DE; Jessop JE; Bledsoe AD; Richardson RS
    Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H668-H678. PubMed ID: 33306447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.