These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 18697518)
1. Phytochelatin systhesis and cadmium uptake of Brassica napus. Selvam A; Wong JW Environ Technol; 2008 Jul; 29(7):765-73. PubMed ID: 18697518 [TBL] [Abstract][Full Text] [Related]
2. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays. Selvam A; Wong JW J Hazard Mater; 2009 Aug; 167(1-3):170-8. PubMed ID: 19185420 [TBL] [Abstract][Full Text] [Related]
3. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
4. [Tolerance Mechanism and Cadmium Enrichment Abilities in Two Bian JL; Guo JM; Wang XD; Yang JX; Yang J; Chen TB; Cao L; Cheng YX; Ren ZH; Wang J; Zhou XY Huan Jing Ke Xue; 2020 Feb; 41(2):970-978. PubMed ID: 32608759 [TBL] [Abstract][Full Text] [Related]
5. Distribution of Cd, Pb, Zn, Mo, and S in juvenile and mature Brassica napus L. var. napus. Romih N; Grabner B; Lakota M; Ribaric-Lasnik C Int J Phytoremediation; 2012 Mar; 14(3):282-301. PubMed ID: 22567712 [TBL] [Abstract][Full Text] [Related]
6. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Cojocaru P; Gusiatin ZM; Cretescu I Environ Sci Pollut Res Int; 2016 Jun; 23(11):10693-10701. PubMed ID: 26884243 [TBL] [Abstract][Full Text] [Related]
7. An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana. Sadi BB; Vonderheide AP; Gong JM; Schroeder JI; Shann JR; Caruso JA J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jan; 861(1):123-9. PubMed ID: 18065298 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Pan F; Meng Q; Luo S; Shen J; Chen B; Khan KY; Japenga J; Ma X; Yang X; Feng Y Int J Phytoremediation; 2017 Mar; 19(3):281-289. PubMed ID: 27593491 [TBL] [Abstract][Full Text] [Related]
9. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. Menhas S; Yang X; Hayat K; Bundschuh J; Chen X; Hui N; Zhang D; Chu S; Zhou Y; Ali EF; Shahid M; Rinklebe J; Lee SS; Shaheen SM; Zhou P J Hazard Mater; 2023 Sep; 457():131862. PubMed ID: 37329597 [TBL] [Abstract][Full Text] [Related]
10. Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleífera and Helianthus annus grown in contaminated soils. Herrero EM; López-Gonzálvez A; Ruiz MA; Lucas-García JA; Barbas C Int J Phytoremediation; 2003; 5(2):153-67. PubMed ID: 12929497 [TBL] [Abstract][Full Text] [Related]
11. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ehsan S; Ali S; Noureen S; Mahmood K; Farid M; Ishaque W; Shakoor MB; Rizwan M Ecotoxicol Environ Saf; 2014 Aug; 106():164-72. PubMed ID: 24840879 [TBL] [Abstract][Full Text] [Related]
12. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Carrier P; Baryla A; Havaux M Planta; 2003 Apr; 216(6):939-50. PubMed ID: 12687361 [TBL] [Abstract][Full Text] [Related]
13. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Sheng XF; Xia JJ Chemosphere; 2006 Aug; 64(6):1036-42. PubMed ID: 16516946 [TBL] [Abstract][Full Text] [Related]
14. Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil. Wang B; Liu L; Gao Y; Chen J Chemosphere; 2009 Mar; 74(10):1400-3. PubMed ID: 19108867 [TBL] [Abstract][Full Text] [Related]
15. Responses of glutathione and phytochelatins biosysthesis in a cadmium accumulator of Perilla frutescens (L.) Britt. under cadmium contaminated conditions. Xiao Q; Wang Y; Lü Q; Wen H; Han B; Chen S; Zheng X; Lin R Ecotoxicol Environ Saf; 2020 Sep; 201():110805. PubMed ID: 32540618 [TBL] [Abstract][Full Text] [Related]
16. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. Li X; Yan Z; Gu D; Li D; Tao Y; Zhang D; Su L; Ao Y J Basic Microbiol; 2019 Jun; 59(6):579-590. PubMed ID: 30980735 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. Fu Y; Mason AS; Zhang Y; Lin B; Xiao M; Fu D; Yu H BMC Plant Biol; 2019 Dec; 19(1):570. PubMed ID: 31856702 [TBL] [Abstract][Full Text] [Related]
18. Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Rossi L; Bagheri M; Zhang W; Chen Z; Burken JG; Ma X Environ Pollut; 2019 Mar; 246():381-389. PubMed ID: 30577006 [TBL] [Abstract][Full Text] [Related]
19. Cadmium phytoremediation potential of turnip compared with three common high Cd-accumulating plants. Li X; Zhang X; Li B; Wu Y; Sun H; Yang Y Environ Sci Pollut Res Int; 2017 Sep; 24(27):21660-21670. PubMed ID: 28752309 [TBL] [Abstract][Full Text] [Related]
20. Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Vadas TM; Ahner BA Environ Pollut; 2009; 157(8-9):2558-63. PubMed ID: 19344986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]