BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18697555)

  • 1. Using flow information to support 3D vessel reconstruction from rotational angiography.
    Waechter I; Bredno J; Weese J; Barratt DC; Hawkes DJ
    Med Phys; 2008 Jul; 35(7):3302-16. PubMed ID: 18697555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using temporal and structural data to reconstruct 3D cerebral vasculature from a pair of 2D digital subtraction angiography sequences.
    Frisken S; Haouchine N; Du R; Golby AJ
    Comput Med Imaging Graph; 2022 Jul; 99():102076. PubMed ID: 35636377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing cerebral vasculature analysis with pathlength-corrected 2D angiographic parametric imaging: A feasibility study.
    Shields A; Williams K; Bhurwani MMS; Setlur Nagesh SV; Chivukula VK; Bednarek DR; Rudin S; Davies J; Siddiqui AH; Ionita CN
    Med Phys; 2024 Apr; 51(4):2633-2647. PubMed ID: 37864843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-stage neural network approach for coronary 3D reconstruction from uncalibrated X-ray angiography images.
    Iyer K; Nallamothu BK; Figueroa CA; Nadakuditi RR
    Sci Rep; 2023 Oct; 13(1):17603. PubMed ID: 37845232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion estimation based on projective information disentanglement for 3D reconstruction of rotational coronary angiography.
    Liu X; Li S; Wang B; Xu L; Gao Z; Yang G
    Comput Biol Med; 2023 May; 157():106743. PubMed ID: 36934532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of 3D vessel reconstruction under Doppler imaging with phantoms: Towards reconstruction of the Circle of Willis.
    Li S; Shea QTK; Ling YT; Zheng YP
    Ultrasonics; 2024 Jul; 141():107332. PubMed ID: 38718460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic quantitative analysis of pulmonary vascular morphology in CT images.
    Zhai Z; Staring M; Hernández Girón I; Veldkamp WJH; Kroft LJ; Ninaber MK; Stoel BC
    Med Phys; 2019 Sep; 46(9):3985-3997. PubMed ID: 31206181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of 3D Arterial Centerline Extraction in Spiral CT Coronary Angiography.
    Cai W; Wang Y; Gu L; Ji X; Shen Q; Ren X
    J Healthc Eng; 2021; 2021():2670793. PubMed ID: 34471506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated hemodynamic assessment for cranial 4D flow MRI.
    Roberts GS; Hoffman CA; Rivera-Rivera LA; Berman SE; Eisenmenger LB; Wieben O
    Magn Reson Imaging; 2023 Apr; 97():46-55. PubMed ID: 36581214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-Nyquist acquisition and constrained reconstruction in time resolved angiography.
    Mistretta CA
    Med Phys; 2011 Jun; 38(6):2975-85. PubMed ID: 21815371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D reconstruction of bone CT scan images based on deformable convex hull.
    Liu T; Lu Y; Xu J; Yang H; Hu J
    Med Biol Eng Comput; 2024 Feb; 62(2):551-561. PubMed ID: 37945796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TaG-Net: Topology-Aware Graph Network for Centerline-Based Vessel Labeling.
    Yao L; Shi F; Wang S; Zhang X; Xue Z; Cao X; Zhan Y; Chen L; Chen Y; Song B; Wang Q; Shen D
    IEEE Trans Med Imaging; 2023 Nov; 42(11):3155-3166. PubMed ID: 37022246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fully Automated Method for Segmenting Arteries and Quantifying Vessel Radii on Magnetic Resonance Angiography Images of Varying Projection Thickness.
    Avadiappan S; Payabvash S; Morrison MA; Jakary A; Hess CP; Lupo JM
    Front Neurosci; 2020; 14():537. PubMed ID: 32612496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Deep Learning and B-Splines to Model Blood Vessel Lumen from 3D Images.
    Materka A; Jurek J
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal frequency domain analysis for blood velocity measurement during embolization procedures.
    Wagner MG; Whitehead JF; Periyasamy S; Laeseke PF; Speidel MA
    Med Phys; 2024 Mar; 51(3):1726-1737. PubMed ID: 37665770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task-based selection of three-dimensional rotational angiography imaging modes using in-house phantom.
    Lubis LE; Basith RA; Hariyati I; Mart T; Bosmans H; Soejoko DS
    Radiography (Lond); 2024 May; 30(3):882-888. PubMed ID: 38603991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation.
    Narayanaswamy A; Dwarakapuram S; Bjornsson CS; Cutler BM; Shain W; Roysam B
    IEEE Trans Med Imaging; 2010 Mar; 29(3):583-97. PubMed ID: 20199906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional ultrasound image reconstruction based on 3D-ResNet in the musculoskeletal system using a 1D probe:
    Zou Q; Huang Y; Gao J; Zhang B; Wang D; Wan M
    Phys Med Biol; 2023 Jul; 68(16):. PubMed ID: 37419124
    [No Abstract]   [Full Text] [Related]  

  • 19. Vascular editor: from angiographic images to 3D vascular models.
    Marchenko Y; Volkau I; Nowinski WL
    J Digit Imaging; 2010 Aug; 23(4):386-98. PubMed ID: 19350326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic recognition of subject-specific cerebrovascular trees.
    Hsu CY; Schneller B; Alaraj A; Flannery M; Zhou XJ; Linninger A
    Magn Reson Med; 2017 Jan; 77(1):398-410. PubMed ID: 26778056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.