BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 18697573)

  • 1. Role of ion channel modifiers in reversal of morphine-induced gastrointestinal inertia by prokinetic agents in mice.
    Sandhiya S; Dkhar SA; Krishna PR; Ramaswamy S
    Indian J Exp Biol; 2008 Jan; 46(1):60-5. PubMed ID: 18697573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative efficacy of some prokinetic drugs in morphine-induced gastrointestinal transit delay in mice.
    Suchitra AD; Dkhar SA; Shewade DG; Shashindran CH
    World J Gastroenterol; 2003 Apr; 9(4):779-83. PubMed ID: 12679931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ATP sensitive potassium channel modifiers on antinociceptive effect of metoclopramide.
    Reddy PM; Shantanu S; Shewade DG; Ramaswamy S
    Indian J Exp Biol; 2001 May; 39(5):476-8. PubMed ID: 11510133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of prokinetic agents on the electrical activity of stomach and duodenum in rats].
    Li F; Zou Y; Huang T
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2009 Jul; 34(7):599-602. PubMed ID: 19648670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinine-induced inhibition of gastrointestinal transit in mice: possible involvement of endogenous opioids.
    Santos FA; Rao VS
    Eur J Pharmacol; 1999 Jan; 364(2-3):193-7. PubMed ID: 9932723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obstructive cholestasis alters intestinal transit in mice: role of opioid system.
    Ghaffari K; Savadkuhi ST; Honar H; Riazi K; Shafaroodi H; Moezi L; Ebrahimkhani MR; Tahmasebi MS; Dehpour AR
    Life Sci; 2004 Dec; 76(4):397-406. PubMed ID: 15530502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of interaction between metoclopramide and morphine in vitro and in mice.
    Ung D; Cowan A; Parkman HP; Nagar S
    Xenobiotica; 2008 Nov; 38(11):1365-76. PubMed ID: 18942041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium channel openers exhibit cross-tolerance with morphine in two experimental models of pain.
    Khanna N; Malhotra RS; Mehta AK; Garg GR; Halder S; Sharma KK
    West Indian Med J; 2010 Oct; 59(5):473-8. PubMed ID: 21473392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of amlodipine, diazoxide, and glibenclamide in development of morphine tolerance in mice.
    Khalilzadeh O; Anvari M; Khalilzadeh A; Sahebgharani M; Zarrindast MR
    Int J Neurosci; 2008 Apr; 118(4):503-18. PubMed ID: 18322859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effects of the opioid agonist morphine on gastrointestinal tract function in horses.
    Boscan P; Van Hoogmoed LM; Farver TB; Snyder JR
    Am J Vet Res; 2006 Jun; 67(6):992-7. PubMed ID: 16740092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glibenclamide antagonizes the inhibitory effect of morphine on gall bladder emptying.
    Patil BM; Thakker PR
    J Pharm Pharmacol; 1996 Mar; 48(3):320-2. PubMed ID: 8737062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Counteracting effect of papaverine on morphine inhibition of gastrointestinal transit in mice.
    Tucci P; Palmery M; Piccolotti P; Pimpinella G; Valeri P; Romanelli L
    Neurogastroenterol Motil; 2008 Aug; 20(8):958-65. PubMed ID: 18363637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced gastrointestinal motility with orally active ghrelin receptor agonists.
    Charoenthongtrakul S; Giuliana D; Longo KA; Govek EK; Nolan A; Gagne S; Morgan K; Hixon J; Flynn N; Murphy BJ; Hernández AS; Li J; Tino JA; Gordon DA; DiStefano PS; Geddes BJ
    J Pharmacol Exp Ther; 2009 Jun; 329(3):1178-86. PubMed ID: 19252061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mosapride citrate, metoclopramide hydrochloride, lidocaine hydrochloride, and cisapride citrate on equine gastric emptying, small intestinal and caecal motility.
    Okamura K; Sasaki N; Yamada M; Yamada H; Inokuma H
    Res Vet Sci; 2009 Apr; 86(2):302-8. PubMed ID: 18723200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.
    Rehni AK; Singh N; Jindal S
    Indian J Exp Biol; 2007 Dec; 45(12):1050-4. PubMed ID: 18254211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of mosapride citrate on proximal and distal colonic motor function in the guinea-pig in vitro.
    Kim HS; Choi EJ; Park H
    Neurogastroenterol Motil; 2008 Feb; 20(2):169-76. PubMed ID: 17931343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human prokinetic drugs promote gastrointestinal motility in zebrafish.
    Zhou J; Guo SY; Zhang Y; Li CQ
    Neurogastroenterol Motil; 2014 Apr; 26(4):589-95. PubMed ID: 24533865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-apoptotic effect of morphine-induced delayed preconditioning on pulmonary artery endothelial cells with anoxia/reoxygenation injury.
    Ding WG; Zhou HC; Cui XG; Li WZ; Guo YP; Zhang B; Liu W
    Chin Med J (Engl); 2008 Jul; 121(14):1313-8. PubMed ID: 18713554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Afobazole influence on antinociceptive properties of morphine].
    Kolik LG; Zhukov VN; Seredenin SB
    Eksp Klin Farmakol; 2009; 72(1):22-3. PubMed ID: 19334506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of endogenous opioids in the control of gastrointestinal motility: predictions from in vitro modelling.
    Sanger GJ; Tuladhar BR
    Neurogastroenterol Motil; 2004 Oct; 16 Suppl 2():38-45. PubMed ID: 15357850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.