BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18697798)

  • 41. Enhanced suppressor T cell activity resulting in increased IgM and decreased IgG productions in children with minimal change nephrotic syndrome.
    Chen CH; Hsieh KH; Lee PP
    Int J Pediatr Nephrol; 1987; 8(2):75-80. PubMed ID: 2958423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of low birth weight on minimal change nephrotic syndrome in children, including a meta-analysis.
    Teeninga N; Schreuder MF; Bökenkamp A; Delemarre-van de Waal HA; van Wijk JA
    Nephrol Dial Transplant; 2008 May; 23(5):1615-20. PubMed ID: 18065792
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Minimal change nephrotic syndrome and prohibitin-2 gene polymorphism.
    Sugimoto K; Miyazawa T; Miyazaki K; Yanagida H; Enya T; Nishi H; Wada N; Okada M; Takemura T
    Clin Exp Nephrol; 2017 Aug; 21(4):665-670. PubMed ID: 27812762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glomerular density-associated changes in clinicopathological features of minimal change nephrotic syndrome in adults.
    Koike K; Tsuboi N; Utsunomiya Y; Kawamura T; Hosoya T
    Am J Nephrol; 2011; 34(6):542-8. PubMed ID: 22123493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of lipid and fatty acid metabolism between minimal change nephrotic syndrome and membranous nephropathy.
    Fujita T; Nakamura N; Kumasaka R; Shimada M; Murakami R; Osawa H; Yamabe H; Okumura K
    In Vivo; 2006; 20(6B):891-3. PubMed ID: 17203785
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HLA class I typing in Egyptian childhood minimal change nephrotic syndrome.
    Donia AF; Ismail AM; Moustafa Fel-H
    J Nephrol; 2008; 21(5):734-7. PubMed ID: 18949728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Comparison of urinary proteomics between steroid-sensitive and steroid-resistant minimal change nephrotic syndrome in children].
    Huang YJ; Huang SM; Zhang AH; Zheng G; Chen RH
    Nan Fang Yi Ke Da Xue Xue Bao; 2007 Oct; 27(10):1507-10. PubMed ID: 17959526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fc-receptor function in minimal change nephrotic syndrome of childhood.
    Davin JC; Foidart JB; Mahieu PR
    Clin Nephrol; 1983 Dec; 20(6):280-4. PubMed ID: 6641030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elevated vascular endothelial growth factor levels in the urine of patients with minimal-change nephrotic syndrome.
    Matsumoto K; Kanmatsuse K
    Clin Nephrol; 2001 Apr; 55(4):269-74. PubMed ID: 11334311
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome.
    Liu LL; Qin Y; Cai JF; Wang HY; Tao JL; Li H; Chen LM; Li MX; Li XM; Li XW
    Clin Immunol; 2011 Jun; 139(3):314-20. PubMed ID: 21450528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Urotensin-II levels in children with minimal change nephrotic syndrome.
    Balat A; Pakir IH; Gok F; Anarat R; Sahinoz S
    Pediatr Nephrol; 2005 Jan; 20(1):42-5. PubMed ID: 15602665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tumor necrosis factor-alpha production from mononuclear cells in nephrotic syndrome.
    Bakr A; Shokeir M; El-Chenawi F; El-Husseni F; Abdel-Rahman A; El-Ashry R
    Pediatr Nephrol; 2003 Jun; 18(6):516-20. PubMed ID: 12707837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. T-cell subsets, interleukin-2 receptor expression and production of interleukin-2 in minimal change nephrotic syndrome.
    Topaloğlu R; Saatçi U; Arikan M; Canpinar H; Bakkaloğlu A; Kansu E
    Pediatr Nephrol; 1994 Dec; 8(6):649-52. PubMed ID: 7696095
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel approach to investigation of the pathogenesis of active minimal-change nephrotic syndrome using subtracted cDNA library screening.
    Sahali D; Pawlak A; Valanciuté A; Grimbert P; Lang P; Remy P; Bensman A; Guellën G
    J Am Soc Nephrol; 2002 May; 13(5):1238-1247. PubMed ID: 11961011
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of lymphokine from nephrotic peripheral blood mononuclear cells on catabolism of rat glomerular basement membrane sulfated compounds.
    Garin EH; Corontzes N
    Nephron; 1992; 62(4):416-21. PubMed ID: 1300437
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Up-regulation of interleukin-4 and CD23/FcepsilonRII in minimal change nephrotic syndrome.
    Cho BS; Yoon SR; Jang JY; Pyun KH; Lee CE
    Pediatr Nephrol; 1999 Apr; 13(3):199-204. PubMed ID: 10353405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Minimal change nephrotic syndrome and classical Hodgkin's lymphoma: report of 21 cases and review of the literature.
    Audard V; Larousserie F; Grimbert P; Abtahi M; Sotto JJ; Delmer A; Boue F; Nochy D; Brousse N; Delarue R; Remy P; Ronco P; Sahali D; Lang P; Hermine O
    Kidney Int; 2006 Jun; 69(12):2251-60. PubMed ID: 16672913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immunological profile in children with minimal change nephrotic syndrome.
    Gupta S; Yuceoglu AM
    Acta Paediatr Scand; 1985 Sep; 74(5):726-32. PubMed ID: 2931943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteomic methodological recommendations for studies involving human plasma, platelets, and peripheral blood mononuclear cells.
    de Roos B; Duthie SJ; Polley AC; Mulholland F; Bouwman FG; Heim C; Rucklidge GJ; Johnson IT; Mariman EC; Daniel H; Elliott RM
    J Proteome Res; 2008 Jun; 7(6):2280-90. PubMed ID: 18489134
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in DNA methylation in naïve T helper cells regulate the pathophysiological state in minimal-change nephrotic syndrome.
    Kobayashi Y; Aizawa A; Takizawa T; Igarashi K; Hatada I; Arakawa H
    BMC Res Notes; 2017 Sep; 10(1):480. PubMed ID: 28915836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.