These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 18697836)

  • 21. Coding with spike shapes and graded potentials in cortical networks.
    Juusola M; Robinson HP; de Polavieja GG
    Bioessays; 2007 Feb; 29(2):178-87. PubMed ID: 17226812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retinogeniculate synaptic properties controlling spike number and timing in relay neurons.
    Blitz DM; Regehr WG
    J Neurophysiol; 2003 Oct; 90(4):2438-50. PubMed ID: 14534270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes.
    Yu J; Qian H; Wang JH
    Mol Brain; 2012 Aug; 5():26. PubMed ID: 22852823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons.
    Chen N; Zhu Y; Gao X; Guan S; Wang JH
    Biochem Biophys Res Commun; 2006 Jul; 346(1):281-7. PubMed ID: 16756951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
    Brader JM; Senn W; Fusi S
    Neural Comput; 2007 Nov; 19(11):2881-912. PubMed ID: 17883345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons.
    Fino E; Paille V; Deniau JM; Venance L
    Neuroscience; 2009 Jun; 160(4):744-54. PubMed ID: 19303912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics.
    Tateno T; Robinson HP
    J Neurophysiol; 2006 Apr; 95(4):2650-63. PubMed ID: 16551842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity.
    Bohte SM; Mozer MC
    Neural Comput; 2007 Feb; 19(2):371-403. PubMed ID: 17206869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of glutamatergic synapses in the medial vestibular nucleus of the mouse.
    Broussard DM
    Eur J Neurosci; 2009 Feb; 29(3):502-17. PubMed ID: 19175402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of glutamate transporters in corticostriatal synaptic transmission.
    Beurrier C; Bonvento G; Kerkerian-Le Goff L; Gubellini P
    Neuroscience; 2009 Feb; 158(4):1608-15. PubMed ID: 19063944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Afterhyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels.
    Chen N; Chen X; Yu J; Wang J
    Biochem Biophys Res Commun; 2006 Aug; 346(3):938-45. PubMed ID: 16777065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons.
    Bacci A; Huguenard JR
    Neuron; 2006 Jan; 49(1):119-30. PubMed ID: 16387644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks.
    Yu J; Qian H; Chen N; Wang JH
    PLoS One; 2011; 6(9):e25219. PubMed ID: 21949885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reliability and precision of neural spike timing: simulation of spectrally broadband synaptic inputs.
    Szucs A; Vehovszky A; Molnár G; Pinto RD; Abarbanel HD
    Neuroscience; 2004; 126(4):1063-73. PubMed ID: 15207339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axonal speeding: shaping synaptic potentials in small neurons by the axonal membrane compartment.
    Mejia-Gervacio S; Collin T; Pouzat C; Tan YP; Llano I; Marty A
    Neuron; 2007 Mar; 53(6):843-55. PubMed ID: 17359919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alkalosis leads to the over-activity of cortical principal neurons.
    Lu Y; Yi L; Liu D; Li J; Sun L; Zhang Z
    Neurosci Lett; 2012 Sep; 525(2):117-22. PubMed ID: 22842394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpyramid spike transmission stabilizes the sparseness of recurrent network activity.
    Ikegaya Y; Sasaki T; Ishikawa D; Honma N; Tao K; Takahashi N; Minamisawa G; Ujita S; Matsuki N
    Cereb Cortex; 2013 Feb; 23(2):293-304. PubMed ID: 22314044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asynchronous presynaptic glutamate release enhances neuronal excitability during the post-spike refractory period.
    Iremonger KJ; Bains JS
    J Physiol; 2016 Feb; 594(4):1005-15. PubMed ID: 26662615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Timing and contributions of pre-synaptic and post-synaptic parameter changes during unitary plasticity events at CA3-CA1 synapses.
    O'Connor DH; Wittenberg GM; Wang SS
    Synapse; 2007 Aug; 61(8):664-78. PubMed ID: 17503487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell-dependent physiological synaptic action of morphine in the rat habenular nucleus: morphine both inhibits and facilitates excitatory synaptic transmission.
    Hashimoto K; Amano T; Sakai N; Suzuki T; Narita M
    Neurosci Lett; 2009 Feb; 451(3):270-3. PubMed ID: 19159664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.