These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 18698006)
21. THERMODYNAMIC CONSIDERATIONS ON ERYTHROCYTE GLYCOLYSIS. MINAKAMI S; YOSHIKAWA H Biochem Biophys Res Commun; 1965 Feb; 18():345-9. PubMed ID: 14300746 [No Abstract] [Full Text] [Related]
22. Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. Tsai IH; Murthy SN; Steck TL J Biol Chem; 1982 Feb; 257(3):1438-42. PubMed ID: 7056725 [TBL] [Abstract][Full Text] [Related]
23. Free radicals induce reversible membrane-cytoplasm translocation of glyceraldehyde-3-phosphate dehydrogenase in human erythrocytes. Mallozzi C; Di Stasi AM; Minetti M Arch Biochem Biophys; 1995 Aug; 321(2):345-52. PubMed ID: 7544096 [TBL] [Abstract][Full Text] [Related]
24. The N-terminal 11 amino acids of human erythrocyte band 3 are critical for aldolase binding and protein phosphorylation: implications for band 3 function. Perrotta S; Borriello A; Scaloni A; De Franceschi L; Brunati AM; Turrini F; Nigro V; del Giudice EM; Nobili B; Conte ML; Rossi F; Iolascon A; Donella-Deana A; Zappia V; Poggi V; Anong W; Low P; Mohandas N; Della Ragione F Blood; 2005 Dec; 106(13):4359-66. PubMed ID: 16118313 [TBL] [Abstract][Full Text] [Related]
25. A comparative study of the binding of aldolase and glyceraldehyde-3-phosphate dehydrogenase to the human erythrocyte membrane. Wilson JE; Reid S; Masters CJ Arch Biochem Biophys; 1982 May; 215(2):610-20. PubMed ID: 7092243 [No Abstract] [Full Text] [Related]
26. Reversible binding of hemoglobin to band 3 constitutes the molecular switch that mediates O2 regulation of erythrocyte properties. Chu H; McKenna MM; Krump NA; Zheng S; Mendelsohn L; Thein SL; Garrett LJ; Bodine DM; Low PS Blood; 2016 Dec; 128(23):2708-2716. PubMed ID: 27688804 [TBL] [Abstract][Full Text] [Related]
27. The interaction of phosphofructokinase with erythrocyte membranes. Higashi T; Richards CS; Uyeda K J Biol Chem; 1979 Oct; 254(19):9542-50. PubMed ID: 39927 [No Abstract] [Full Text] [Related]
28. [Effect of erythrocyte membranes and tubulin on the activity of NAD-dependent dehydrogenases]. Shcherbatova NA; Nagradova NK; Muronets VI Biokhimiia; 1996 Aug; 61(8):1512-25. PubMed ID: 8962925 [TBL] [Abstract][Full Text] [Related]
29. An 11-amino acid beta-hairpin loop in the cytoplasmic domain of band 3 is responsible for ankyrin binding in mouse erythrocytes. Stefanovic M; Markham NO; Parry EM; Garrett-Beal LJ; Cline AP; Gallagher PG; Low PS; Bodine DM Proc Natl Acad Sci U S A; 2007 Aug; 104(35):13972-7. PubMed ID: 17715300 [TBL] [Abstract][Full Text] [Related]
30. Modulation of red cell glycolysis: interactions between vertebrate hemoglobins and cytoplasmic domains of band 3 red cell membrane proteins. Weber RE; Voelter W; Fago A; Echner H; Campanella E; Low PS Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R454-64. PubMed ID: 15087282 [TBL] [Abstract][Full Text] [Related]
31. Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3. Puchulu-Campanella E; Turrini FM; Li YH; Low PS Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13732-13737. PubMed ID: 27856737 [TBL] [Abstract][Full Text] [Related]
32. [Erythrocyte enzymes in human fetuses]. Vetrella M; Barthelmai W Monatsschr Kinderheilkd (1902); 1971 Jul; 119(7):265-7. PubMed ID: 4328617 [No Abstract] [Full Text] [Related]
33. Red cell enzymes--II. Enzyme activities in the red blood cells of high and low potassium sheep. Agar NS; Gruca MA; Harley JD; Roberts J Comp Biochem Physiol B; 1975 Aug; 51(4):467-9. PubMed ID: 168029 [No Abstract] [Full Text] [Related]
34. Red cell enzymes--III. Enzyme activities in the red blood cells of different breeds of sheep. Agar NS; Gruca MA; Harley JD; Roberts J Comp Biochem Physiol B; 1975 Aug; 51(4):471-3. PubMed ID: 168030 [No Abstract] [Full Text] [Related]
35. Enzyme-enzyme interactions within human erythrocytes as suggested from prelytic release. Cseke E; Szabolcsi G Acta Biochim Biophys Acad Sci Hung; 1983; 18(3-4):151-61. PubMed ID: 6430012 [TBL] [Abstract][Full Text] [Related]
36. Comparative erythrocyte metabolism: studies using guinea pig cells. Kiefer S; Smith JE Lab Anim Sci; 1974 Apr; 24(2):326-8. PubMed ID: 4362880 [No Abstract] [Full Text] [Related]
37. [Trisomy-21 with deficiency of erythrocyte-phosphofructokinase]. Schwarzmeier J; Moser K; Zimprich H; Weiss I Z Kinderheilkd; 1970; 108(4):325-30. PubMed ID: 4252955 [No Abstract] [Full Text] [Related]
38. Lack of binding of glyceraldehyde-3-phosphate dehydrogenase to erythrocyte membranes under in vivo conditions. Rich GT; Pryor JS; Dawson AP Biochim Biophys Acta; 1985 Jul; 817(1):61-6. PubMed ID: 4005258 [TBL] [Abstract][Full Text] [Related]
39. A 1H n.m.r. study of isotope exchange catalysed by glycolytic enzymes in the human erythrocyte. Brindle KM; Brown FF; Campbell ID; Foxall DL; Simpson RJ Biochem J; 1982 Mar; 202(3):589-602. PubMed ID: 7092833 [TBL] [Abstract][Full Text] [Related]
40. Red cell enzymes--IV. A comparative study of red blood cells from various species of marsupials in Australia. Agar NS; Gruca MA; Mulley A; Stephens T; Harley JD Comp Biochem Physiol B; 1976; 53(4):455-60. PubMed ID: 177246 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]