These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 18698581)
1. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Dausend J; Musyanovych A; Dass M; Walther P; Schrezenmeier H; Landfester K; Mailänder V Macromol Biosci; 2008 Dec; 8(12):1135-43. PubMed ID: 18698581 [TBL] [Abstract][Full Text] [Related]
2. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Harush-Frenkel O; Debotton N; Benita S; Altschuler Y Biochem Biophys Res Commun; 2007 Feb; 353(1):26-32. PubMed ID: 17184736 [TBL] [Abstract][Full Text] [Related]
3. Surface roughness and charge influence the uptake of nanoparticles: fluorescently labeled pickering-type versus surfactant-stabilized nanoparticles. Schrade A; Mailänder V; Ritz S; Landfester K; Ziener U Macromol Biosci; 2012 Nov; 12(11):1459-71. PubMed ID: 22976936 [TBL] [Abstract][Full Text] [Related]
4. Polymeric nanoparticles of different sizes overcome the cell membrane barrier. Lerch S; Dass M; Musyanovych A; Landfester K; Mailänder V Eur J Pharm Biopharm; 2013 Jun; 84(2):265-74. PubMed ID: 23422734 [TBL] [Abstract][Full Text] [Related]
5. Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles. Lühmann T; Rimann M; Bittermann AG; Hall H Bioconjug Chem; 2008 Sep; 19(9):1907-16. PubMed ID: 18717536 [TBL] [Abstract][Full Text] [Related]
6. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Oh JM; Choi SJ; Lee GE; Kim JE; Choy JH Chem Asian J; 2009 Jan; 4(1):67-73. PubMed ID: 18988236 [TBL] [Abstract][Full Text] [Related]
7. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. Nam HY; Kwon SM; Chung H; Lee SY; Kwon SH; Jeon H; Kim Y; Park JH; Kim J; Her S; Oh YK; Kwon IC; Kim K; Jeong SY J Control Release; 2009 May; 135(3):259-67. PubMed ID: 19331853 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Bannunah AM; Vllasaliu D; Lord J; Stolnik S Mol Pharm; 2014 Dec; 11(12):4363-73. PubMed ID: 25327847 [TBL] [Abstract][Full Text] [Related]
9. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. Slowing I; Trewyn BG; Lin VS J Am Chem Soc; 2006 Nov; 128(46):14792-3. PubMed ID: 17105274 [TBL] [Abstract][Full Text] [Related]
10. UNC119 inhibits dynamin and dynamin-dependent endocytic processes. Karim Z; Vepachedu R; Gorska M; Alam R Cell Signal; 2010 Jan; 22(1):128-37. PubMed ID: 19781630 [TBL] [Abstract][Full Text] [Related]
11. Porcine circovirus 2 infection of epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Misinzo G; Delputte PL; Lefebvre DJ; Nauwynck HJ Virus Res; 2009 Jan; 139(1):1-9. PubMed ID: 18952130 [TBL] [Abstract][Full Text] [Related]
12. Specific effects of surface amines on polystyrene nanoparticles in their interactions with mesenchymal stem cells. Jiang X; Dausend J; Hafner M; Musyanovych A; Röcker C; Landfester K; Mailänder V; Nienhaus GU Biomacromolecules; 2010 Mar; 11(3):748-53. PubMed ID: 20166675 [TBL] [Abstract][Full Text] [Related]
13. Overlapping functions of different dynamin isoforms in clathrin-dependent and -independent endocytosis in pancreatic beta cells. Lu J; He Z; Fan J; Xu P; Chen L Biochem Biophys Res Commun; 2008 Jun; 371(2):315-9. PubMed ID: 18442475 [TBL] [Abstract][Full Text] [Related]
14. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Kuhn DA; Vanhecke D; Michen B; Blank F; Gehr P; Petri-Fink A; Rothen-Rutishauser B Beilstein J Nanotechnol; 2014; 5():1625-36. PubMed ID: 25383275 [TBL] [Abstract][Full Text] [Related]
15. On the mechanism of internalization of alpha-synuclein into microglia: roles of ganglioside GM1 and lipid raft. Park JY; Kim KS; Lee SB; Ryu JS; Chung KC; Choo YK; Jou I; Kim J; Park SM J Neurochem; 2009 Jul; 110(1):400-11. PubMed ID: 19457104 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of fluorescent polyisoprene nanoparticles and their uptake into various cells. Lorenz MR; Kohnle MV; Dass M; Walther P; Höcherl A; Ziener U; Landfester K; Mailänder V Macromol Biosci; 2008 Aug; 8(8):711-27. PubMed ID: 18504805 [TBL] [Abstract][Full Text] [Related]
17. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles. Seo JH; Cho K; Lee SY; Joo SW Nanotechnology; 2011 Jun; 22(23):235101. PubMed ID: 21490390 [TBL] [Abstract][Full Text] [Related]
18. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Harush-Frenkel O; Rozentur E; Benita S; Altschuler Y Biomacromolecules; 2008 Feb; 9(2):435-43. PubMed ID: 18189360 [TBL] [Abstract][Full Text] [Related]
19. Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Zhu J; Liao L; Zhu L; Zhang P; Guo K; Kong J; Ji C; Liu B Talanta; 2013 Mar; 107():408-15. PubMed ID: 23598242 [TBL] [Abstract][Full Text] [Related]
20. Meso-tetra (carboxyphenyl) porphyrin (TCPP) nanoparticles were internalized by SW480 cells by a clathrin-mediated endocytosis pathway to induce high photocytotoxicity. Hu Z; Pan Y; Wang J; Chen J; Li J; Ren L Biomed Pharmacother; 2009 Feb; 63(2):155-64. PubMed ID: 18790596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]