BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

841 related articles for article (PubMed ID: 18698648)

  • 1. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.
    Chin JW; Cirino PC
    Biotechnol Prog; 2011; 27(2):333-41. PubMed ID: 21344680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E. coli B as platforms for xylitol production.
    Khankal R; Luziatelli F; Chin JW; Frei CS; Cirino PC
    Biotechnol Lett; 2008 Sep; 30(9):1645-53. PubMed ID: 18414795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
    Cirino PC; Chin JW; Ingram LO
    Biotechnol Bioeng; 2006 Dec; 95(6):1167-76. PubMed ID: 16838379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of xylose transporters in xylitol production from engineered Escherichia coli.
    Khankal R; Chin JW; Cirino PC
    J Biotechnol; 2008 Apr; 134(3-4):246-52. PubMed ID: 18359531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.
    Akinterinwa O; Cirino PC
    Appl Environ Microbiol; 2011 Jan; 77(2):706-9. PubMed ID: 21097593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli.
    Fasan R; Crook NC; Peters MW; Meinhold P; Buelter T; Landwehr M; Cirino PC; Arnold FH
    Biotechnol Bioeng; 2011 Mar; 108(3):500-10. PubMed ID: 21246504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of xylitol from D-xylose by recombinant Lactococcus lactis.
    Nyyssölä A; Pihlajaniemi A; Palva A; von Weymarn N; Leisola M
    J Biotechnol; 2005 Jul; 118(1):55-66. PubMed ID: 15916828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain engineering strategies for improving whole-cell biocatalysis: engineering Escherichia coli to overproduce xylitol as an example.
    Chin JW; Cirino PC
    Methods Mol Biol; 2011; 743():185-203. PubMed ID: 21553192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation.
    Kabus A; Georgi T; Wendisch VF; Bott M
    Appl Microbiol Biotechnol; 2007 May; 75(1):47-53. PubMed ID: 17216441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation.
    Siedler S; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):929-37. PubMed ID: 21670981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli.
    Jan J; Martinez I; Wang Y; Bennett GN; San KY
    Biotechnol Prog; 2013; 29(5):1124-30. PubMed ID: 23794523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain.
    Lee HC; Kim JS; Jang W; Kim SY
    J Biotechnol; 2010 Aug; 149(1-2):24-32. PubMed ID: 20600382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.