These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18699169)

  • 1. Inexpensive apparatus for the measurement of the temperature dependence of gas phase fluorescence spectra.
    Swords MD; Caplin M; Phillips D
    Rev Sci Instrum; 1978 May; 49(5):669. PubMed ID: 18699169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning mass spectrometer for quantitative reaction studies on catalytically active microstructures.
    Roos M; Kielbassa S; Schirling C; Häring T; Bansmann J; Behm RJ
    Rev Sci Instrum; 2007 Aug; 78(8):084104. PubMed ID: 17764340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving bed reactor setup to study complex gas-solid reactions.
    Gupta P; Velazquez-Vargas LG; Valentine C; Fan LS
    Rev Sci Instrum; 2007 Aug; 78(8):085106. PubMed ID: 17764354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile inlet system for on-line compound-specific deltaD and delta13C gas chromatography-oxidation/reduction-isotope ratio mass spectrometry analysis of gaseous mixtures.
    Henning M; Strapoć D; Lis GP; Sauer P; Fong J; Schimmelmann A; Pratt LM
    Rapid Commun Mass Spectrom; 2007; 21(14):2269-72. PubMed ID: 17577874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions.
    Escudero C; Jiang P; Pach E; Borondics F; West MW; Tuxen A; Chintapalli M; Carenco S; Guo J; Salmeron M
    J Synchrotron Radiat; 2013 May; 20(Pt 3):504-8. PubMed ID: 23592631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principle, calibration, and application of the in situ alkali chloride monitor.
    Forsberg C; Broström M; Backman R; Edvardsson E; Badiei S; Berg M; Kassman H
    Rev Sci Instrum; 2009 Feb; 80(2):023104. PubMed ID: 19256637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoluminescence apparatus using PT100 resistors as the heating and sensing elements.
    Quilty JW; Robinson J; Appleby GA; Edgar A
    Rev Sci Instrum; 2007 Aug; 78(8):083905. PubMed ID: 17764333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparatus for extruding wires of soft metals under vacuum or inert atmospheres.
    Kayser FX; Rashid MS
    Rev Sci Instrum; 1978 May; 49(5):639. PubMed ID: 18699164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar digital nanoliter dispensing system based on thermocapillary actuation.
    Darhuber AA; Valentino JP; Troian SM
    Lab Chip; 2010 Apr; 10(8):1061-71. PubMed ID: 20358115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new cell for the study of in situ chemical reactions using X-ray absorption spectroscopy.
    Longo A; Balerna A; d'Acapito F; D'Anca F; Giannici F; Liotta LF; Pantaleo G; Martorana A
    J Synchrotron Radiat; 2005 Jul; 12(Pt 4):499-505. PubMed ID: 15968129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterization of a temporal analysis of products reactor.
    Leppelt R; Hansgen D; Widmann D; Häring T; Bräth G; Behm RJ
    Rev Sci Instrum; 2007 Oct; 78(10):104103. PubMed ID: 17979438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparatus for studies of high-temperature chemical reactions in single particle systems.
    Andrzejak TA; Shafirovich E; Taylor DG; Varma A
    Rev Sci Instrum; 2007 Aug; 78(8):085102. PubMed ID: 17764350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial wetting gas-liquid segmented flow microreactor.
    Kazemi Oskooei SA; Sinton D
    Lab Chip; 2010 Jul; 10(13):1732-4. PubMed ID: 20383398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of transient surface reactions on planar catalyst with time-resolved time-of-flight mass spectrometry.
    Okumura K; Sakamoto Y; Kayama T; Kizaki Y; Shinjoh H; Motohiro T
    Rev Sci Instrum; 2007 Oct; 78(10):104102. PubMed ID: 17979437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated sample treatment by flow techniques prior to liquid-phase separations.
    Theodoridis GA; Zacharis CK; Voulgaropoulos AN
    J Biochem Biophys Methods; 2007 Mar; 70(2):243-52. PubMed ID: 17113153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CCD based fiber-optic spectrometer detection.
    Kapoor R
    Methods Mol Biol; 2009; 503():435-45. PubMed ID: 19151957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.
    Kudo H; Suzuki Y; Gessei T; Takahashi D; Arakawa T; Mitsubayashi K
    Biosens Bioelectron; 2010 Oct; 26(2):854-8. PubMed ID: 20810270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of the micro-PIC gaseous area detector in small-angle X-ray scattering experiments.
    Hattori K; Tsuchiya K; Ito K; Okada Y; Fujii K; Kubo H; Miuchi K; Takata M; Tanimori T; Uekusa H
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):231-6. PubMed ID: 19240335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A major step towards efficient sample preparation with bead-beating.
    Verollet R
    Biotechniques; 2008 May; 44(6):832-3. PubMed ID: 18476840
    [No Abstract]   [Full Text] [Related]  

  • 20. Real-time, on-line monitoring of organic chemical reactions using extractive electrospray ionization tandem mass spectrometry.
    Zhu L; Gamez G; Chen HW; Huang HX; Chingin K; Zenobi R
    Rapid Commun Mass Spectrom; 2008 Oct; 22(19):2993-8. PubMed ID: 18763264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.