These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18699492)

  • 1. Fabrication and properties of rf niobium-on-sapphire superconducting resonators.
    Blair DG; Hamilton WO
    Rev Sci Instrum; 1979 Mar; 50(3):279. PubMed ID: 18699492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting accelerometer using niobium-on-sapphire rf resonator.
    Blair DG
    Rev Sci Instrum; 1979 Mar; 50(3):286. PubMed ID: 18699493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless sensing using oscillator circuits locked to remote high-Q SAW resonators.
    Pohl A; Ostermayer G; Seifert F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1161-8. PubMed ID: 18244275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel matching network employing surface acoustic wave devices for W-CDMA power amplifiers.
    Li H; He S; Hashimoto KY; Omori T; Yamaguchi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e905-9. PubMed ID: 16797655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Q-factor distributed bragg reflector resonators with reflectors of arbitrary thickness.
    Le Floch JM; Tobar ME; Cros D; Krupka J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2689-95. PubMed ID: 18276575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The quality factor of a superconducting rf resonator in a magnetic field.
    Ulmer S; Kracke H; Blaum K; Kreim S; Mooser A; Quint W; Rodegheri CC; Walz J
    Rev Sci Instrum; 2009 Dec; 80(12):123302. PubMed ID: 20059135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Analytical Temperature-Dependent Design Model for Contour-Mode MEMS Resonators and Oscillators Verified by Measurements.
    Stegner J; Gropp S; Podoskin D; Stehr U; Hoffmann M; Hein MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29973571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.
    Xiao BP; Reece CE; Phillips HL; Geng RL; Wang H; Marhauser F; Kelley MJ
    Rev Sci Instrum; 2011 May; 82(5):056104. PubMed ID: 21639552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss-improved electroacoustical modeling of small Helmholtz resonators.
    Starecki T
    J Acoust Soc Am; 2007 Oct; 122(4):2118-23. PubMed ID: 17902849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Friedt JM; Droit C; Martin G; Ballandras S
    Rev Sci Instrum; 2010 Jan; 81(1):014701. PubMed ID: 20113119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circuit model for nonlinear simulation of radio-frequency filters using bulk acoustic wave resonators.
    Ueda M; Iwaki M; Nishihara T; Satoh Y; Hashimoto KY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):849-56. PubMed ID: 18467229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable filters using wideband elastic resonators.
    Kadota M; Ogami T; Kimura T; Daimon K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2129-36. PubMed ID: 24081261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise slit-width control of niobium apertures for superconducting LEDs.
    Huh JH; Hermannstädter C; Sato H; Ito S; Idutsu Y; Sasakura H; Tanaka K; Akazaki T; Suemune I
    Nanotechnology; 2011 Jan; 22(4):045302. PubMed ID: 21169663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAW resonator design and fabrication for 2.0, 2.6 and 3.3 GHz.
    Pendergrass LL; Studebaker LG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):372-9. PubMed ID: 18290162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation.
    Driscoll MM; Haynes JT; Jelen RA; Weinert RW; Gavaler JR; Talvacchio J; Wagner GR; Zaki KA; Liang XP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):405-11. PubMed ID: 18267650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invited article: design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators.
    Locke CR; Ivanov EN; Hartnett JG; Stanwix PL; Tobar ME
    Rev Sci Instrum; 2008 May; 79(5):051301. PubMed ID: 18513054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Q whispering gallery traveling wave resonators for oscillator frequency stabilization.
    Tobar ME; Ivanov EN; Blondy P; Cros D; Guillon P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):421-6. PubMed ID: 18238559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave oscillators incorporating high performance distributed Bragg reflector microwave resonators.
    Flory CA; Ko HL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):824-9. PubMed ID: 18244234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable microwave resonators and oscillators using magnetostatic waves.
    Ishak WS; Kok-Wai C; Kunz WE; Miccoli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):396-405. PubMed ID: 18290166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.