These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18699530)

  • 61. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.
    Tomita M; Murakami M
    Nature; 2003 Jan; 421(6922):517-20. PubMed ID: 12556888
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Thermal conductivity measurements using 1ω and 3ω methods revisited for voltage-driven setups.
    Kimling J; Martens S; Nielsch K
    Rev Sci Instrum; 2011 Jul; 82(7):074903. PubMed ID: 21806217
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.
    Huang KD; Yang RJ
    Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.
    Ge Z; Wang W; Yang C
    Lab Chip; 2011 Apr; 11(7):1396-402. PubMed ID: 21331425
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of a novel calorimetry setup based on metallic paramagnetic temperature sensors.
    Reifenberger A; Reiser A; Kempf S; Fleischmann A; Enss C
    Rev Sci Instrum; 2020 Mar; 91(3):035118. PubMed ID: 32259929
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Heat generation, accumulation and dissipation in clusters of the aggregated insects].
    Es'kov EK; Toboev VA
    Zh Obshch Biol; 2009; 70(2):110-20. PubMed ID: 19425349
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A differential double-coil inductive transducer for measuring electrical conductivity.
    Kusmierz J
    Rev Sci Instrum; 2007 Dec; 78(12):124701. PubMed ID: 18163740
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Observation of the spin Seebeck effect.
    Uchida K; Takahashi S; Harii K; Ieda J; Koshibae W; Ando K; Maekawa S; Saitoh E
    Nature; 2008 Oct; 455(7214):778-81. PubMed ID: 18843364
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Voltage-Biased Superconducting Transition-Edge Bolometer with Strong Electrothermal Feedback Operated at 370 mK.
    Lee SF; Gildemeister JM; Holmes W; Lee AT; Richards PL
    Appl Opt; 1998 Jun; 37(16):3391-7. PubMed ID: 18273298
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A waveguide-coupled thermally isolated radiometric source.
    Rostem K; Chuss DT; Lourie NP; Voellmer GM; Wollack EJ
    Rev Sci Instrum; 2013 Apr; 84(4):044701. PubMed ID: 23635214
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A switched vibrating-hot-wire method for measuring the viscosity and thermal conductivity of liquids.
    Li F; Shi S; Ma W; Zhang X
    Rev Sci Instrum; 2019 Jul; 90(7):075105. PubMed ID: 31370429
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Experiment of low resistance joints for the ITER correction coil.
    Liu H; Wu Y; Wu W; Liu B; Shi Y; Guo S
    Rev Sci Instrum; 2013 Jan; 84(1):015106. PubMed ID: 23387694
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantum thermal conductance of electrons in a one-dimensional wire.
    Chiatti O; Nicholls JT; Proskuryakov YY; Lumpkin N; Farrer I; Ritchie DA
    Phys Rev Lett; 2006 Aug; 97(5):056601. PubMed ID: 17026125
    [TBL] [Abstract][Full Text] [Related]  

  • 74. General bidirectional thermal characterization via the 3ω technique.
    Bauer ML; Norris PM
    Rev Sci Instrum; 2014 Jun; 85(6):064903. PubMed ID: 24985838
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method.
    Kwon B; Baek SH; Kim SK; Kim JS
    Rev Sci Instrum; 2014 Apr; 85(4):045108. PubMed ID: 24784660
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Isochoric heating of foamed metal using pulsed power discharge as a making technique of warm dense matter.
    Amano Y; Miki Y; Takahashi T; Sasaki T; Kikuchi T; Harada N
    Rev Sci Instrum; 2012 Aug; 83(8):085107. PubMed ID: 22938332
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique.
    Sizov A; Cederkrantz D; Salmi L; Rosén A; Jacobson L; Gustafsson SE; Gustavsson M
    Rev Sci Instrum; 2016 Jul; 87(7):074901. PubMed ID: 27475584
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Alternative methods for determining the electrical conductivity of core samples.
    Lytle RJ; Duba AG; Willows JL
    Rev Sci Instrum; 1979 May; 50(5):611. PubMed ID: 18699561
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Automatic thermal conductivity measurements with 3-omega technique.
    Chernodoubov DA; Inyushkin AV
    Rev Sci Instrum; 2019 Feb; 90(2):024904. PubMed ID: 30831682
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermal conductivity of spin-polarized liquid 3He.
    Sawkey D; Puech L; Wolf PE
    Phys Rev Lett; 2006 Jun; 96(21):215301. PubMed ID: 16803243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.