These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18699618)

  • 1. Resonant torsional apparatus for contactless measurements of electrical conductivity and magnetic susceptibility of solids.
    Hendrickson JR; Philbrook J
    Rev Sci Instrum; 1979 Jul; 50(7):849-55. PubMed ID: 18699618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A differential double-coil inductive transducer for measuring electrical conductivity.
    Kusmierz J
    Rev Sci Instrum; 2007 Dec; 78(12):124701. PubMed ID: 18163740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: radio frequency inductance-capacitance band-stop filter circuit to perform contactless conductivity measurements in pulsed magnetic fields.
    Altarawneh MM
    Rev Sci Instrum; 2012 Sep; 83(9):096102. PubMed ID: 23020430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-precision apparatus for the characterization of thermal interface materials.
    Kempers R; Kolodner P; Lyons A; Robinson AJ
    Rev Sci Instrum; 2009 Sep; 80(9):095111. PubMed ID: 19791968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microwave cavity perturbation technique for contact-free and in situ electrical conductivity measurements in catalysis and materials science.
    Eichelbaum M; Stösser R; Karpov A; Dobner CK; Rosowski F; Trunschke A; Schlögl R
    Phys Chem Chem Phys; 2012 Jan; 14(3):1302-12. PubMed ID: 22146931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of proton-conducting Perovskite-type into fluorite-type fast oxide ion electrolytes using a CO2 capture technique and their electrical properties.
    Trobec F; Thangadurai V
    Inorg Chem; 2008 Oct; 47(19):8972-84. PubMed ID: 18707095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nondestructive measurement and high-precision evaluation of the electrical conductivity of doped GaAs wafers using microwaves.
    Liu L; Ju Y
    Rev Sci Instrum; 2010 Dec; 81(12):124701. PubMed ID: 21198038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical conductivity-defect structure correlation of variable-valence and fixed-valence acceptor-doped BaTiO(3) in quenched state.
    Yoo HI; Oh TS; Kwon HS; Shin DK; Lee JS
    Phys Chem Chem Phys; 2009 May; 11(17):3115-26. PubMed ID: 19370206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.
    Schwamb T; Burg BR; Schirmer NC; Poulikakos D
    Nanotechnology; 2009 Oct; 20(40):405704. PubMed ID: 19738310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncontact technique for measuring the electrical resistivity and magnetic susceptibility of electrostatically levitated materials.
    Rustan GE; Spyrison NS; Kreyssig A; Prozorov R; Goldman AI
    Rev Sci Instrum; 2012 Oct; 83(10):103907. PubMed ID: 23126782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contactless measurement of nonlinear conductivity in the radio-frequency range.
    Došlić M; Pelc D; Požek M
    Rev Sci Instrum; 2014 Jul; 85(7):073905. PubMed ID: 25085150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip electrophoresis in low-temperature co-fired ceramics technology with contactless conductivity measurement.
    Fercher G; Smetana W; Vellekoop MJ
    Electrophoresis; 2009 Jul; 30(14):2516-22. PubMed ID: 19588458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximity detector circuits: an alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic field environments.
    Altarawneh MM; Mielke CH; Brooks JS
    Rev Sci Instrum; 2009 Jun; 80(6):066104. PubMed ID: 19566232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contactless technique for the measurement of electrical resistivity in anisotropic materials.
    Zeller C; Denenstein A; Foley GM
    Rev Sci Instrum; 1979 May; 50(5):602. PubMed ID: 18699559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of supersolidity in rotating solid helium.
    Choi H; Takahashi D; Kono K; Kim E
    Science; 2010 Dec; 330(6010):1512-5. PubMed ID: 21097904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical conductivity and permittivity of murine myocardium.
    Raghavan K; Porterfield JE; Kottam AT; Feldman MD; Escobedo D; Valvano JW; Pearce JA
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2044-53. PubMed ID: 19605306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jet-cooled vibronic spectroscopy and asymmetric torsional potentials of phenylcyclopentene.
    Newby JJ; Müller CW; Liu CP; Zwier TS
    Phys Chem Chem Phys; 2009 Oct; 11(37):8330-41. PubMed ID: 19756289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.