These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 18700133)

  • 21. Endocytosis controls glutamate-induced nuclear accumulation of ERK.
    Trifilieff P; Lavaur J; Pascoli V; Kappès V; Brami-Cherrier K; Pagès C; Micheau J; Caboche J; Vanhoutte P
    Mol Cell Neurosci; 2009 Jul; 41(3):325-36. PubMed ID: 19398002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ERK2-mediated phosphorylation of Par3 regulates neuronal polarization.
    Funahashi Y; Namba T; Fujisue S; Itoh N; Nakamuta S; Kato K; Shimada A; Xu C; Shan W; Nishioka T; Kaibuchi K
    J Neurosci; 2013 Aug; 33(33):13270-85. PubMed ID: 23946386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA).
    Collins DM; Murdoch H; Dunlop AJ; Charych E; Baillie GS; Wang Q; Herberg FW; Brandon N; Prinz A; Houslay MD
    Cell Signal; 2008 Dec; 20(12):2356-69. PubMed ID: 18845247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK.
    Mace PD; Wallez Y; Egger MF; Dobaczewska MK; Robinson H; Pasquale EB; Riedl SJ
    Nat Commun; 2013; 4():1681. PubMed ID: 23575685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-tyrosine phosphatase-kappa regulates CD4+ T cell development through ERK1/2-mediated signaling.
    Erdenebayar N; Maekawa Y; Nishida J; Kitamura A; Yasutomo K
    Biochem Biophys Res Commun; 2009 Dec; 390(3):489-93. PubMed ID: 19800317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ERK2 CD domain mutation from a human cancer cell line enhanced anchorage-independent cell growth and abnormality in Drosophila.
    Mahalingam M; Arvind R; Ida H; Murugan AK; Yamaguchi M; Tsuchida N
    Oncol Rep; 2008 Oct; 20(4):957-62. PubMed ID: 18813840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ERK2 dependent signaling contributes to wound healing after a partial-thickness burn.
    Satoh Y; Saitoh D; Takeuchi A; Ojima K; Kouzu K; Kawakami S; Ito M; Ishihara M; Sato S; Takishima K
    Biochem Biophys Res Commun; 2009 Mar; 381(1):118-22. PubMed ID: 19232324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility.
    Szokodi I; Kerkelä R; Kubin AM; Sármán B; Pikkarainen S; Kónyi A; Horváth IG; Papp L; Tóth M; Skoumal R; Ruskoaho H
    Circulation; 2008 Oct; 118(16):1651-8. PubMed ID: 18824646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein kinase C- and reactive oxygen species-dependent stimulation of intracellular cAMP in human eosinophils. The role of extracellular signal-regulated protein kinases.
    Ezeamuzie CI; Taslim N
    Med Princ Pract; 2008; 17(6):468-74. PubMed ID: 18836276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1.
    Kilanczyk E; Filipek S; Jastrzebska B; Filipek A
    Biochem Biophys Res Commun; 2009 Feb; 380(1):54-9. PubMed ID: 19166809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of non-phosphorylated activation loop residues in determining ERK2 dephosphorylation, activity, and subcellular localization.
    Bendetz-Nezer S; Seger R
    J Biol Chem; 2007 Aug; 282(34):25114-22. PubMed ID: 17597065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation of phospholipase C-delta 1 regulates its enzymatic activity.
    Fujii M; Yi KS; Kim MJ; Ha SH; Ryu SH; Suh PG; Yagisawa H
    J Cell Biochem; 2009 Oct; 108(3):638-50. PubMed ID: 19681039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of novel, dual mechanism ERK inhibitors by affinity selection screening of an inactive kinase.
    Deng Y; Shipps GW; Cooper A; English JM; Annis DA; Carr D; Nan Y; Wang T; Zhu HY; Chuang CC; Dayananth P; Hruza AW; Xiao L; Jin W; Kirschmeier P; Windsor WT; Samatar AA
    J Med Chem; 2014 Nov; 57(21):8817-26. PubMed ID: 25313996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering and cytosolic delivery of a native regulatory protein and its variants for modulation of ERK2 signaling pathway.
    Ryou JH; Sohn YK; Kim DG; Kyeong HH; Kim HS
    Biotechnol Bioeng; 2018 Apr; 115(4):839-849. PubMed ID: 29240226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying ERK2-protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains.
    Callaway K; Rainey MA; Dalby KN
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):316-23. PubMed ID: 16324895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Protein Phosphorylation Landscape of Mouse Spermatids during Spermiogenesis.
    Li Y; Cheng Y; Zhu T; Zhang H; Li W; Guo Y; Qi Y; Chen X; Zhang J; Sha J; Zhou Z; Zhu H; Guo X
    Proteomics; 2019 Jun; 19(11):e1900055. PubMed ID: 30901149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of protein phosphorylation and the translocation of green fluorescence protein-extracellular signal-regulated kinase 2 by capillary electrophoresis using laser induced fluorescence detection.
    Yoon S; Han KY; Nam HS; Nga le V; Yoo YS
    J Chromatogr A; 2004 Nov; 1056(1-2):237-42. PubMed ID: 15595556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A survival selection strategy for engineering synthetic binding proteins that specifically recognize post-translationally phosphorylated proteins.
    Meksiriporn B; Ludwicki MB; Stephens EA; Jiang A; Lee HC; Waraho-Zhmayev D; Kummer L; Brandl F; Plückthun A; DeLisa MP
    Nat Commun; 2019 Apr; 10(1):1830. PubMed ID: 31015433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activated ERK2 is a monomer in vitro with or without divalent cations and when complexed to the cytoplasmic scaffold PEA-15.
    Kaoud TS; Devkota AK; Harris R; Rana MS; Abramczyk O; Warthaka M; Lee S; Girvin ME; Riggs AF; Dalby KN
    Biochemistry; 2011 May; 50(21):4568-78. PubMed ID: 21506533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 5',3' Cyclic adenosine monophosphate dependent protein phosphorylation in differentiating male mouse germ cells.
    Geremia R; Boitani C; Conti M; Mocini D; Monesi V
    Cell Biol Int Rep; 1981 Dec; 5(12):1071. PubMed ID: 6276026
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.