These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 18700771)
21. [FeFe]-Hydrogenase active site models with relatively low reduction potentials: Diiron dithiolate complexes containing rigid bridges. Li P; Wang M; Pan J; Chen L; Wang N; Sun L J Inorg Biochem; 2008 Apr; 102(4):952-9. PubMed ID: 18262276 [TBL] [Abstract][Full Text] [Related]
22. Extending the motif of the [FeFe]-hydrogenase active site models: protonation of Fe2(NR)2(CO)6-xLx species. Volkers PI; Rauchfuss TB J Inorg Biochem; 2007 Nov; 101(11-12):1748-51. PubMed ID: 17606299 [TBL] [Abstract][Full Text] [Related]
23. Hyperfine interactions and electron distribution in Fe(II)Fe (I) and Fe (I)Fe (I) models for the active site of the [FeFe] hydrogenases: Mössbauer spectroscopy studies of low-spin Fe(I.). Stoian SA; Hsieh CH; Singleton ML; Casuras AF; Darensbourg MY; McNeely K; Sweely K; Popescu CV J Biol Inorg Chem; 2013 Aug; 18(6):609-22. PubMed ID: 23700296 [TBL] [Abstract][Full Text] [Related]
24. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine. Zheng D; Wang M; Chen L; Wang N; Sun L Inorg Chem; 2014 Feb; 53(3):1555-61. PubMed ID: 24422466 [TBL] [Abstract][Full Text] [Related]
25. Bridging-hydride influence on the electronic structure of an [FeFe] hydrogenase active-site model complex revealed by XAES-DFT. Leidel N; Hsieh CH; Chernev P; Sigfridsson KG; Darensbourg MY; Haumann M Dalton Trans; 2013 Jun; 42(21):7539-54. PubMed ID: 23446996 [TBL] [Abstract][Full Text] [Related]
26. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer? Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661 [TBL] [Abstract][Full Text] [Related]
27. Effect of Lewis acid on the structure of a diiron dithiolate complex based on the active site of [FeFe]-hydrogenase assessed by density functional theory. Lee JW; Jo WH Dalton Trans; 2009 Oct; (40):8532-7. PubMed ID: 19809728 [TBL] [Abstract][Full Text] [Related]
28. Effect of cyanide ligands on the electronic structure of [FeFe] hydrogenase active-site model complexes with an azadithiolate cofactor. Erdem Ö; Stein M; Kaur-Ghumaan S; Reijerse EJ; Ott S; Lubitz W Chemistry; 2013 Oct; 19(43):14566-72. PubMed ID: 24038239 [TBL] [Abstract][Full Text] [Related]
29. Non-innocent bma ligand in a dissymetrically disubstituted diiron dithiolate related to the active site of the [FeFe] hydrogenases. Si Y; Charreteur K; Capon JF; Gloaguen F; Pétillon FY; Schollhammer P; Talarmin J J Inorg Biochem; 2010 Oct; 104(10):1038-42. PubMed ID: 20547420 [TBL] [Abstract][Full Text] [Related]
30. Stereochemistry of electrophilic attack at 34e⁻ dimetallic complexes: the case of diiron dithiolato carbonyls + MeS⁺. Olsen MT; Gray DL; Rauchfuss TB; De Gioia L; Zampella G Chem Commun (Camb); 2011 Jun; 47(23):6554-6. PubMed ID: 21776614 [TBL] [Abstract][Full Text] [Related]
31. Influence of the Dithiolate Bridge on the Oxidative Processes of Diiron Models Related to the Active Site of [FeFe] Hydrogenases. Arrigoni F; Mohamed Bouh S; De Gioia L; Elleouet C; Pétillon FY; Schollhammer P; Zampella G Chemistry; 2017 Mar; 23(18):4364-4372. PubMed ID: 28052527 [TBL] [Abstract][Full Text] [Related]
32. EPR/ENDOR, Mössbauer, and quantum-chemical investigations of diiron complexes mimicking the active oxidized state of [FeFe]hydrogenase. Silakov A; Olsen MT; Sproules S; Reijerse EJ; Rauchfuss TB; Lubitz W Inorg Chem; 2012 Aug; 51(15):8617-28. PubMed ID: 22800196 [TBL] [Abstract][Full Text] [Related]
33. Effect of the S-to-S bridge on the redox properties and H Cheng M; Wang M; Zheng D; Sun L Dalton Trans; 2016 Nov; 45(44):17687-17696. PubMed ID: 27754505 [TBL] [Abstract][Full Text] [Related]
34. Terminal hydride in [FeFe]-hydrogenase model has lower potential for H2 production than the isomeric bridging hydride. Barton BE; Rauchfuss TB Inorg Chem; 2008 Apr; 47(7):2261-3. PubMed ID: 18333613 [TBL] [Abstract][Full Text] [Related]
35. Use of 1,10-phenanthroline in diiron dithiolate derivatives related to the [Fe-Fe] hydrogenase active site. Orain PY; Capon JF; Kervarec N; Gloaguen F; Pétillon F; Pichon R; Schollhammer P; Talarmin J Dalton Trans; 2007 Sep; (34):3754-6. PubMed ID: 17712440 [TBL] [Abstract][Full Text] [Related]
36. New class of diiron dithiolates related to the Fe-only hydrogenase active site: synthesis and characterization of [Fe2(SR)(2)(CNMe)7]2+. Lawrence JD; Rauchfuss TB; Wilson SR Inorg Chem; 2002 Dec; 41(24):6193-5. PubMed ID: 12444758 [TBL] [Abstract][Full Text] [Related]
37. Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Adamska-Venkatesh A; Simmons TR; Siebel JF; Artero V; Fontecave M; Reijerse E; Lubitz W Phys Chem Chem Phys; 2015 Feb; 17(7):5421-30. PubMed ID: 25613229 [TBL] [Abstract][Full Text] [Related]
38. Precursors to [FeFe]-hydrogenase models: syntheses of Fe2(SR)2(CO)6 from CO-free iron sources. Volkers PI; Boyke CA; Chen J; Rauchfuss TB; Whaley CM; Wilson SR; Yao H Inorg Chem; 2008 Aug; 47(15):7002-8. PubMed ID: 18610969 [TBL] [Abstract][Full Text] [Related]
39. Sulfonated diiron complexes as water-soluble models of the [Fe-Fe]-hydrogenase enzyme active site. Singleton ML; Crouthers DJ; Duttweiler RP; Reibenspies JH; Darensbourg MY Inorg Chem; 2011 Jun; 50(11):5015-26. PubMed ID: 21524099 [TBL] [Abstract][Full Text] [Related]
40. Preparation, facile deprotonation, and rapid H/D exchange of the mu-hydride diiron model complexes of the [FeFe]-hydrogenase containing a pendant amine in a chelating diphosphine ligand. Wang N; Wang M; Liu J; Jin K; Chen L; Sun L Inorg Chem; 2009 Dec; 48(24):11551-8. PubMed ID: 20000647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]