These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18700806)

  • 1. Design of light scattering in nanowire materials for photovoltaic applications.
    Muskens OL; Rivas JG; Algra RE; Bakkers EP; Lagendijk A
    Nano Lett; 2008 Sep; 8(9):2638-42. PubMed ID: 18700806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.
    van Dam D; van Hoof NJ; Cui Y; van Veldhoven PJ; Bakkers EP; Gómez Rivas J; Haverkort JE
    ACS Nano; 2016 Dec; 10(12):11414-11419. PubMed ID: 28024324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption of light in a single vertical nanowire and a nanowire array.
    Anttu N
    Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices.
    Nowzari A; Heurlin M; Jain V; Storm K; Hosseinnia A; Anttu N; Borgström MT; Pettersson H; Samuelson L
    Nano Lett; 2015 Mar; 15(3):1809-14. PubMed ID: 25671437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Samuelson L; Lehmann S; Pistol ME
    Opt Express; 2014 Nov; 22(23):29204-12. PubMed ID: 25402159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of light into nanowire arrays and subsequent absorption.
    Anttu N; Xu HQ
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7183-7. PubMed ID: 21137893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires.
    Diedenhofen SL; Janssen OT; Grzela G; Bakkers EP; Gómez Rivas J
    ACS Nano; 2011 Mar; 5(3):2316-23. PubMed ID: 21366282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array.
    Fazio B; Artoni P; Antonia Iatì M; D'Andrea C; Lo Faro MJ; Del Sorbo S; Pirotta S; Giuseppe Gucciardi P; Musumeci P; Salvatore Vasi C; Saija R; Galli M; Priolo F; Irrera A
    Light Sci Appl; 2016 Apr; 5(4):e16062. PubMed ID: 30167158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light absorption and emission in nanowire array solar cells.
    Kupec J; Stoop RL; Witzigmann B
    Opt Express; 2010 Dec; 18(26):27589-605. PubMed ID: 21197033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. III-V nanowire arrays: growth and light interaction.
    Heiss M; Russo-Averchi E; Dalmau-Mallorquí A; Tütüncüoğlu G; Matteini F; Rüffer D; Conesa-Boj S; Demichel O; Alarcon-Lladó E; Fontcuberta i Morral A
    Nanotechnology; 2014 Jan; 25(1):014015. PubMed ID: 24334728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-dependent absorption in structurally tailored randomly branched vertical arrays of InSb nanowires.
    Mohammad A; Das SR; Khan MR; Alam MA; Janes DB
    Nano Lett; 2012 Dec; 12(12):6112-8. PubMed ID: 23131195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Light Absorption in Silicon Nanowire Photovoltaic Devices with Dielectric and Metallic Grating Structures.
    Park JS; Kim KH; Hwang MS; Zhang X; Lee JM; Kim J; Song KD; No YS; Jeong KY; Cahoon JF; Kim SK; Park HG
    Nano Lett; 2017 Dec; 17(12):7731-7736. PubMed ID: 29148810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area soft-imprinted nanowire networks as light trapping transparent conductors.
    van de Groep J; Gupta D; Verschuuren MA; Wienk MM; Janssen RA; Polman A
    Sci Rep; 2015 Jun; 5():11414. PubMed ID: 26091006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review on photonic properties of nanowires for photovoltaics.
    Mokkapati S; Jagadish C
    Opt Express; 2016 Jul; 24(15):17345-58. PubMed ID: 27464182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-Temperature Surface Modification of Cu Nanowires and Their Applications in Transparent Electrodes, SERS-Based Sensors, and Organic Solar Cells.
    Wang X; Wang R; Zhai H; Shen X; Wang T; Shi L; Yu R; Sun J
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28831-28837. PubMed ID: 27701862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doubling absorption in nanowire solar cells with dielectric shell optical antennas.
    Kim SK; Zhang X; Hill DJ; Song KD; Park JS; Park HG; Cahoon JF
    Nano Lett; 2015 Jan; 15(1):753-8. PubMed ID: 25546325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications.
    Hu L; Chen G
    Nano Lett; 2007 Nov; 7(11):3249-52. PubMed ID: 17927257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis.
    Chen Y; Kivisaari P; Pistol ME; Anttu N
    Nanotechnology; 2018 Jan; 29(4):045401. PubMed ID: 29189204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.
    Wu Y; Yan X; Zhang X; Ren X
    Nanoscale Res Lett; 2018 Feb; 13(1):62. PubMed ID: 29476287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.