BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 18701380)

  • 1. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification.
    Herman P; Prasad G; McGinnity TM; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2730-3. PubMed ID: 19605314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A time-series prediction approach for feature extraction in a brain-computer interface.
    Coyle D; Prasad G; McGinnity TM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):461-7. PubMed ID: 16425827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bispectrum-based feature extraction technique for devising a practical brain-computer interface.
    Shahid S; Prasad G
    J Neural Eng; 2011 Apr; 8(2):025014. PubMed ID: 21436530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface.
    Wang T; He B
    J Neural Eng; 2004 Mar; 1(1):1-7. PubMed ID: 15876616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-channel linear descriptors for event-related EEG collected in brain computer interface.
    Pei XM; Zheng CX; Xu J; Bin GY; Wang HW
    J Neural Eng; 2006 Mar; 3(1):52-8. PubMed ID: 16510942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    J Neural Eng; 2011 Jun; 8(3):036007. PubMed ID: 21478575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.
    Kamousi B; Amini AN; He B
    J Neural Eng; 2007 Jun; 4(2):17-25. PubMed ID: 17409476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface.
    Wei Q; Wang Y; Gao X; Gao S
    J Neural Eng; 2007 Jun; 4(2):120-9. PubMed ID: 17409486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of four-class motor imagery EEG data for the BCI-competition 2005.
    Schlögl A; Lee F; Bischof H; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):L14-22. PubMed ID: 16317224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of common spatial patterns with complex band power features in a four-class BCI experiment.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):642-51. PubMed ID: 16602570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces.
    Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):550-6. PubMed ID: 17355071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying the use of fuzzy inference systems for motor imagery classification.
    Fabien L; Anatole L; Fabrice L; Bruno A
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):322-4. PubMed ID: 17601202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parametric feature extraction and classification strategy for brain-computer interfacing.
    Burke DP; Kelly SP; de Chazal P; Reilly RB; Finucane C
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):12-7. PubMed ID: 15813401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.