These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 18701715)

  • 1. Double-strand breaks associated with repetitive DNA can reshape the genome.
    Argueso JL; Westmoreland J; Mieczkowski PA; Gawel M; Petes TD; Resnick MA
    Proc Natl Acad Sci U S A; 2008 Aug; 105(33):11845-50. PubMed ID: 18701715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination.
    Hoang ML; Tan FJ; Lai DC; Celniker SE; Hoskins RA; Dunham MJ; Zheng Y; Koshland D
    PLoS Genet; 2010 Dec; 6(12):e1001228. PubMed ID: 21151956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae.
    Liddell L; Manthey G; Pannunzio N; Bailis A
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation.
    Frankenberg-Schwager M; Gebauer A; Koppe C; Wolf H; Pralle E; Frankenberg D
    Radiat Res; 2009 Mar; 171(3):265-73. PubMed ID: 19267553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meiotic recombination initiation in and around retrotransposable elements in Saccharomyces cerevisiae.
    Sasaki M; Tischfield SE; van Overbeek M; Keeney S
    PLoS Genet; 2013 Aug; 9(8):e1003732. PubMed ID: 24009525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions.
    Mosbach V; Viterbo D; Descorps-Declère S; Poggi L; Vaysse-Zinkhöfer W; Richard GF
    PLoS Genet; 2020 Jul; 16(7):e1008924. PubMed ID: 32673314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency of DNA end joining
    Sunder S; Wilson TE
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9481-9490. PubMed ID: 31019070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast.
    Andersen SL; Zhang A; Dominska M; Moriel-Carretero M; Herrera-Moyano E; Aguilera A; Petes TD
    PLoS Genet; 2016 Mar; 12(3):e1005938. PubMed ID: 26968037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae.
    Buhler C; Borde V; Lichten M
    PLoS Biol; 2007 Dec; 5(12):e324. PubMed ID: 18076285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blunt-ended DNA double-strand breaks induced by endonucleases PvuII and EcoRV are poor substrates for repair in Saccharomyces cerevisiae.
    Westmoreland JW; Summers JA; Holland CL; Resnick MA; Lewis LK
    DNA Repair (Amst); 2010 Jun; 9(6):617-26. PubMed ID: 20356803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements.
    VanHulle K; Lemoine FJ; Narayanan V; Downing B; Hull K; McCullough C; Bellinger M; Lobachev K; Petes TD; Malkova A
    Mol Cell Biol; 2007 Apr; 27(7):2601-14. PubMed ID: 17242181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders.
    Sankaranarayanan K; Wassom JS
    Mutat Res; 2005 Oct; 578(1-2):333-70. PubMed ID: 16084534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways and assays for DNA double-strand break repair by homologous recombination.
    Li J; Sun H; Huang Y; Wang Y; Liu Y; Chen X
    Acta Biochim Biophys Sin (Shanghai); 2019 Sep; 51(9):879-889. PubMed ID: 31294447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks.
    Rothkamm K; Kühne M; Jeggo PA; Löbrich M
    Cancer Res; 2001 May; 61(10):3886-93. PubMed ID: 11358801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.
    Lewis LK; Westmoreland JW; Resnick MA
    Genetics; 1999 Aug; 152(4):1513-29. PubMed ID: 10430580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic integrity and the repair of double-strand DNA breaks.
    Pastink A; Eeken JC; Lohman PH
    Mutat Res; 2001 Sep; 480-481():37-50. PubMed ID: 11506797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D
    Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-liquid phase separation in DNA double-strand breaks repair.
    Wang YL; Zhao WW; Shi J; Wan XB; Zheng J; Fan XJ
    Cell Death Dis; 2023 Nov; 14(11):746. PubMed ID: 37968256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shuffling the yeast genome using CRISPR/Cas9-generated DSBs that target the transposable Ty1 elements.
    Qi L; Sui Y; Tang XX; McGinty RJ; Liang XZ; Dominska M; Zhang K; Mirkin SM; Zheng DQ; Petes TD
    PLoS Genet; 2023 Jan; 19(1):e1010590. PubMed ID: 36701275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.