These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18701751)

  • 1. Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2889-98. PubMed ID: 18701751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics.
    Temchin AN; Ruggero MA
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):297-318. PubMed ID: 19921334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold tuning curves of chinchilla auditory nerve fibers. II. Dependence on spontaneous activity and relation to cochlear nonlinearity.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2899-906. PubMed ID: 18753325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Cai H; Ruggero MA
    J Neurosci; 2012 Aug; 32(31):10522-9. PubMed ID: 22855802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The frequency response and other properties of single fibres in the guinea-pig cochlear nerve.
    Evans EF
    J Physiol; 1972 Oct; 226(1):263-87. PubMed ID: 5083170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
    Ruggero MA; Narayan SS; Temchin AN; Recio A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases.
    Robles L; Ruggero MA; Rich NC
    J Acoust Soc Am; 1986 Nov; 80(5):1364-74. PubMed ID: 3782615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing of cochlear responses inferred from frequency-threshold tuning curves of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Ruggero MA
    Hear Res; 2011 Feb; 272(1-2):178-86. PubMed ID: 20951191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wiener kernels of chinchilla auditory-nerve fibers: verification using responses to tones, clicks, and noise and comparison with basilar-membrane vibrations.
    Temchin AN; Recio-Spinoso A; van Dijk P; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3635-48. PubMed ID: 15659530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiological frequency-position map of the chinchilla cochlea.
    Müller M; Hoidis S; Smolders JW
    Hear Res; 2010 Sep; 268(1-2):184-93. PubMed ID: 20685384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shapes of cat auditory nerve fiber tuning curves.
    Javel E
    Hear Res; 1994 Dec; 81(1-2):167-88. PubMed ID: 7737923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing of neural excitation in relation to basilar membrane motion in the basal region of the guinea pig cochlea during the presentation of low-frequency acoustic stimulation.
    Wada H; Takeda A; Kawase T
    Hear Res; 2002 Mar; 165(1-2):165-76. PubMed ID: 12031526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds.
    Robles L; Temchin AN; Fan YH; Ruggero MA
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):447-57. PubMed ID: 26068200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves.
    Altoè A; Pulkki V; Verhulst S
    J Acoust Soc Am; 2017 Jun; 141(6):4438. PubMed ID: 28679269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discharge patterns in the cochlear nucleus of the chinchilla following noise induced asymptotic threshold shift.
    Salvi RJ; Hamernik RP; Henderson D
    Exp Brain Res; 1978 Jul; 32(3):301-20. PubMed ID: 680046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers.
    Recio-Spinoso A; Temchin AN; van Dijk P; Fan YH; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3615-34. PubMed ID: 15659532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers.
    Ohlemiller KK; Siegel JH
    Hear Res; 1994 Nov; 80(2):174-90. PubMed ID: 7896576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of auditory nerve responses in absence of outer hair cells.
    Dallos P; Harris D
    J Neurophysiol; 1978 Mar; 41(2):365-83. PubMed ID: 650272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes in tuning in the gerbil cochlea.
    Lewis ER; Henry KR
    Hear Res; 1994 Sep; 79(1-2):183-9. PubMed ID: 7806481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.