BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 18701781)

  • 1. Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater.
    Bengtsson S; Werker A; Welander T
    Water Sci Technol; 2008; 58(2):323-30. PubMed ID: 18701781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater.
    Bengtsson S; Werker A; Christensson M; Welander T
    Bioresour Technol; 2008 Feb; 99(3):509-16. PubMed ID: 17360180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates.
    Bengtsson S
    Biotechnol Bioeng; 2009 Nov; 104(4):698-708. PubMed ID: 19530079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms.
    Bengtsson S; Pisco AR; Reis MA; Lemos PC
    J Biotechnol; 2010 Feb; 145(3):253-63. PubMed ID: 19958801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources.
    Dai Y; Yuan Z; Wang X; Oehmen A; Keller J
    Water Res; 2007 May; 41(9):1885-96. PubMed ID: 17368713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent.
    Chua AS; Takabatake H; Satoh H; Mino T
    Water Res; 2003 Sep; 37(15):3602-11. PubMed ID: 12867326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus.
    Morgan-Sagastume F; Karlsson A; Johansson P; Pratt S; Boon N; Lant P; Werker A
    Water Res; 2010 Oct; 44(18):5196-211. PubMed ID: 20638096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of the ratio of propionate to acetate on the transformation and composition of polyhydroxyalkanoates with enriched cultures of glycogen-accumulating organisms.
    Jiang Y; Chen Y
    Environ Technol; 2009 Mar; 30(3):241-9. PubMed ID: 19438056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature effects on glycogen accumulating organisms.
    Lopez-Vazquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC
    Water Res; 2009 Jun; 43(11):2852-64. PubMed ID: 19380157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation.
    Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R
    Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PHA (polyhydroxyalkanoate) production potential of activated sludge treating wastewater.
    Takabatake H; Satoh H; Mino T; Matsuo T
    Water Sci Technol; 2002; 45(12):119-26. PubMed ID: 12201092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valuable product production from wood mill effluents.
    Mato T; Ben M; Kennes C; Veiga MC
    Water Sci Technol; 2010; 62(10):2294-300. PubMed ID: 21076215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions.
    Lu H; Keller J; Yuan Z
    Water Res; 2007 Dec; 41(20):4646-56. PubMed ID: 17658580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source.
    Dai Y; Yuan Z; Jack K; Keller J
    J Biotechnol; 2007 May; 129(3):489-97. PubMed ID: 17368850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effects on the aerobic metabolism of glycogen-accumulating organisms.
    Lopez-Vazquez CM; Song YI; Hooijmans CM; Brdjanovic D; Moussa MS; Gijzen HJ; van Loosdrecht MC
    Biotechnol Bioeng; 2008 Oct; 101(2):295-306. PubMed ID: 18623226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecophysiology of Defluviicoccus-related tetrad-forming organisms in an anaerobic-aerobic activated sludge process.
    Wong MT; Liu WT
    Environ Microbiol; 2007 Jun; 9(6):1485-96. PubMed ID: 17504486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.
    Reddy MV; Mohan SV
    Bioresour Technol; 2012 Jan; 103(1):313-21. PubMed ID: 22055090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective enrichment of a methanol-utilizing consortium using pulp and paper mill waste streams.
    Mockos GR; Smith WA; Loge FJ; Thompson DN
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):211-26. PubMed ID: 18418753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process.
    Jiang Y; Chen Y; Zheng X
    Environ Sci Technol; 2009 Oct; 43(20):7734-41. PubMed ID: 19921887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.