These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18701795)

  • 1. Treatment of yellow water by membrane separations and advanced oxidation methods.
    Lazarova Z; Spendlingwimmer R
    Water Sci Technol; 2008; 58(2):419-26. PubMed ID: 18701795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine.
    Pronk W; Palmquist H; Biebow M; Boller M
    Water Res; 2006 Apr; 40(7):1405-12. PubMed ID: 16530802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced treatment of membrane bioreactor (MBR) effluents for effective wastewater reclamation.
    Sarp S; Chon K; Kim IS; Cho J
    Water Sci Technol; 2011; 63(2):303-10. PubMed ID: 21252435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents.
    Esplugas S; Bila DM; Krause LG; Dezotti M
    J Hazard Mater; 2007 Nov; 149(3):631-42. PubMed ID: 17826898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J; Petrović M; Barceló D
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency, costs and benefits of AOPs for removal of pharmaceuticals from the water cycle.
    Tuerk J; Sayder B; Boergers A; Vitz H; Kiffmeyer TK; Kabasci S
    Water Sci Technol; 2010; 61(4):985-93. PubMed ID: 20182078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid chromatography-(tandem) mass spectrometry for the follow-up of the elimination of persistent pharmaceuticals during wastewater treatment applying biological wastewater treatment and advanced oxidation.
    Gebhardt W; Schröder HF
    J Chromatogr A; 2007 Aug; 1160(1-2):34-43. PubMed ID: 17582426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ozone oxidation of oestrogenic active substances in wastewater and drinking water.
    Baig S; Hansmann G; Paolini B
    Water Sci Technol; 2008; 58(2):451-8. PubMed ID: 18701800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of selected pharmaceuticals by biosolids from municipal wastewater treatment plants: importance of modest pH change and degree of mineralization.
    Kimura K; Hara H; Watanabe Y
    Water Sci Technol; 2010; 62(5):1084-9. PubMed ID: 20818049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment.
    Radjenović J; Petrović M; Ventura F; Barceló D
    Water Res; 2008 Aug; 42(14):3601-10. PubMed ID: 18656225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of door-manufacturing factories wastewaters using CDEO and other AOPs: a comparison.
    Beteta A; Cañizares P; Rodrigo MA; Rodríguez L; Sáez C
    J Hazard Mater; 2009 Aug; 168(1):358-63. PubMed ID: 19285804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm/membrane filtration for reclamation and reuse of rural wastewaters.
    Hyun KS; Lee SJ
    Water Sci Technol; 2009; 59(11):2145-52. PubMed ID: 19494453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of hormones and pharmaceuticals during combined anaerobic treatment and nitrogen removal by partial nitritation-anammox in vacuum collected black water.
    de Graaff MS; Vieno NM; Kujawa-Roeleveld K; Zeeman G; Temmink H; Buisman CJ
    Water Res; 2011 Jan; 45(1):375-83. PubMed ID: 20832097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated systems analysis of persistent polar pollutants in the water cycle.
    van der Voet E; Nikolic I; Huppes G; Kleijn R
    Water Sci Technol; 2004; 50(5):243-51. PubMed ID: 15497854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water.
    Verliefde AR; Heijman SG; Cornelissen ER; Amy G; Van der Bruggen B; van Dijk JC
    Water Res; 2007 Aug; 41(15):3227-40. PubMed ID: 17583761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced treatment of endocrine disrupting chemicals by a granular bed electrochemical reactor.
    Sakakibara Y; Kounoike T; Kashimura H
    Water Sci Technol; 2010; 62(10):2218-24. PubMed ID: 21076206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of aqueous pharmaceuticals by pulsed corona discharge.
    Panorel I; Preis S; Kornev I; Hatakka H; Louhi-Kultanen M
    Environ Technol; 2013; 34(5-8):923-30. PubMed ID: 23837343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced oxidation for indirect potable reuse: a practical application in Australia.
    Poussade Y; Roux A; Walker T; Zavlanos V
    Water Sci Technol; 2009; 60(9):2419-24. PubMed ID: 19901475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paired removal of color and COD from textile dyeing wastewater by simultaneous anodic and indirect cathodic oxidation.
    Wang CT; Chou WL; Kuo YM; Chang FL
    J Hazard Mater; 2009 Sep; 169(1-3):16-22. PubMed ID: 19362772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.