These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18701795)

  • 21. Application of combined membrane biological reactor and electro-oxidation processes for the treatment of landfill leachates.
    Aloui F; Fki F; Loukil S; Sayadi S
    Water Sci Technol; 2009; 60(3):605-14. PubMed ID: 19657155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane technology for the future treatment of paper mill effluents: chances and challenges of further system closure.
    Simstich B; Oeller HJ
    Water Sci Technol; 2010; 62(9):2190-7. PubMed ID: 21045349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rejection of pharmaceuticals by forward osmosis membranes.
    Jin X; Shan J; Wang C; Wei J; Tang CY
    J Hazard Mater; 2012 Aug; 227-228():55-61. PubMed ID: 22640821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Treatment of a landfill leachate containing compounds of pharmaceutical origin.
    Matosić M; Terzić S; Korajlija Jakopović H; Mijatović I; Ahel M
    Water Sci Technol; 2008; 58(3):597-602. PubMed ID: 18725727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2009 May; 43(9):2349-62. PubMed ID: 19303127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of pharmaceutical residues in a pilot wastewater treatment plant.
    Kosjek T; Heath E; Kompare B
    Anal Bioanal Chem; 2007 Feb; 387(4):1379-87. PubMed ID: 17203254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the risk of exogenously consumed pharmaceuticals in land-applied human urine.
    Khan U; Nicell JA
    Water Sci Technol; 2010; 62(6):1335-45. PubMed ID: 20861548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical oxidation post-treatment of landfill leachates treated with membrane bioreactor.
    Feki F; Aloui F; Feki M; Sayadi S
    Chemosphere; 2009 Apr; 75(2):256-60. PubMed ID: 19155042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes.
    Klavarioti M; Mantzavinos D; Kassinos D
    Environ Int; 2009 Feb; 35(2):402-17. PubMed ID: 18760478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resources and nutrients oriented greywater treatment for non-potable reuses.
    Li F; Behrendt J; Wichmann K; Otterpohl R
    Water Sci Technol; 2008; 57(12):1901-7. PubMed ID: 18587176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Technical and economical evaluation of water recycling in the carwash industry with membrane processes.
    Boussu K; Eelen D; Vanassche S; Vandecasteele C; Van der Bruggen B; Van Baelen G; Colen W; Vanassche S
    Water Sci Technol; 2008; 57(7):1131-5. PubMed ID: 18441443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation.
    Nasr B; Hsen T; Abdellatif G
    J Environ Manage; 2009 Jan; 90(1):523-30. PubMed ID: 18336990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water.
    Benotti MJ; Stanford BD; Wert EC; Snyder SA
    Water Res; 2009 Apr; 43(6):1513-22. PubMed ID: 19269667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes - degradation, elucidation of byproducts and assessment of their biological potency.
    Fatta-Kassinos D; Vasquez MI; Kümmerer K
    Chemosphere; 2011 Oct; 85(5):693-709. PubMed ID: 21835425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How to avoid pharmaceuticals in the aquatic environment.
    Larsen TA; Lienert J; Joss A; Siegrist H
    J Biotechnol; 2004 Sep; 113(1-3):295-304. PubMed ID: 15380662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enantiomeric fraction as an indicator of pharmaceutical biotransformation during wastewater treatment and in the environment--a review.
    Hashim NH; Shafie S; Khan SJ
    Environ Technol; 2010 Nov; 31(12):1349-70. PubMed ID: 21121459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.
    Sirés I; Brillas E
    Environ Int; 2012 Apr; 40():212-229. PubMed ID: 21862133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of advanced treatment technologies for the elimination of pharmaceutical compounds.
    Baumgarten S; Schröder HF; Charwath C; Lange M; Beier S; Pinnekamp J
    Water Sci Technol; 2007; 56(5):1-8. PubMed ID: 17881831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electro-oxidative abatement of low-salinity reverse osmosis membrane concentrates.
    Van Hege K; Verhaege M; Verstraete W
    Water Res; 2004 Mar; 38(6):1550-8. PubMed ID: 15016532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals.
    Rizzo L; Meric S; Guida M; Kassinos D; Belgiorno V
    Water Res; 2009 Sep; 43(16):4070-8. PubMed ID: 19596131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.