These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18702078)

  • 1. Nodal expression and heterochrony in the evolution of dorsal-ventral and left-right axes formation in the direct-developing sea urchin Heliocidaris erythrogramma.
    Smith MS; Turner FR; Raff RA
    J Exp Zool B Mol Dev Evol; 2008 Dec; 310(8):609-22. PubMed ID: 18702078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.
    Love AC; Lee AE; Andrews ME; Raff RA
    Evol Dev; 2008; 10(1):74-88. PubMed ID: 18184359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma.
    Wilson KA; Andrews ME; Raff RA
    Evol Dev; 2005; 7(5):401-15. PubMed ID: 16174034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma.
    Wilson KA; Andrews ME; Rudolf Turner F; Raff RA
    Evol Dev; 2005; 7(5):416-28. PubMed ID: 16174035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma.
    Byrne M; Koop D; Cisternas P; Strbenac D; Yang JY; Wray GA
    Mar Genomics; 2015 Dec; 24 Pt 1():41-5. PubMed ID: 26066611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.
    Minsuk SB; Raff RA
    Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma.
    Klueg KM; Harkey MA; Raff RA
    Dev Biol; 1997 Feb; 182(1):121-33. PubMed ID: 9028919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma.
    Emlet RB
    Dev Biol; 1995 Feb; 167(2):405-15. PubMed ID: 7875367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm.
    Love AC; Andrews ME; Raff RA
    Evol Dev; 2007; 9(1):51-68. PubMed ID: 17227366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma.
    Zhou N; Wilson KA; Andrews ME; Kauffman JS; Raff RA
    J Exp Zool B Mol Dev Evol; 2003 Dec; 300(1):58-71. PubMed ID: 14984035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma.
    Haag ES; Sly BJ; Andrews ME; Raff RA
    Dev Biol; 1999 Jul; 211(1):77-87. PubMed ID: 10373306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan.
    Koop D; Cisternas P; Morris VB; Strbenac D; Yang JY; Wray GA; Byrne M
    BMC Dev Biol; 2017 Feb; 17(1):4. PubMed ID: 28193178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct-developing sea urchins and the evolutionary reorganization of early development.
    Raff RA
    Bioessays; 1992 Apr; 14(4):211-8. PubMed ID: 1596270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological evolution in sea urchin development: hybrids provide insights into the pace of evolution.
    Byrne M; Voltzow J
    Bioessays; 2004 Apr; 26(4):343-7. PubMed ID: 15057932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
    Duboc V; Lapraz F; Saudemont A; Bessodes N; Mekpoh F; Haillot E; Quirin M; Lepage T
    Development; 2010 Jan; 137(2):223-35. PubMed ID: 20040489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chapter 7. Axis formation and the rapid evolutionary transformation of larval form.
    Raff RA; Snoke Smith M
    Curr Top Dev Biol; 2009; 86():163-90. PubMed ID: 19361693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary Conservation of the Larval Serotonergic Nervous System in a Direct Developing Sea Urchin: (sea urchin development/larval nervous systems/heterochrony/direct development/Heliocidaris erythrogramma).
    Bisgrove BW; Raff RA
    Dev Growth Differ; 1989 Aug; 31(4):363-370. PubMed ID: 37281459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo.
    Molina MD; de Crozé N; Haillot E; Lepage T
    Curr Opin Genet Dev; 2013 Aug; 23(4):445-53. PubMed ID: 23769944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of direct-developing larvae: selection vs loss.
    Smith MS; Zigler KS; Raff RA
    Bioessays; 2007 Jun; 29(6):566-71. PubMed ID: 17508402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.