These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18702129)

  • 1. Electrochemical processing of carbon dioxide.
    Oloman C; Li H
    ChemSusChem; 2008; 1(5):385-91. PubMed ID: 18702129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility.
    Agarwal AS; Zhai Y; Hill D; Sridhar N
    ChemSusChem; 2011 Sep; 4(9):1301-10. PubMed ID: 21922681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2.
    Verma S; Kim B; Jhong HR; Ma S; Kenis PJ
    ChemSusChem; 2016 Aug; 9(15):1972-9. PubMed ID: 27345560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT.
    Beltramo GL; Shubina TE; Koper MT
    Chemphyschem; 2005 Dec; 6(12):2597-606. PubMed ID: 16331729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights.
    Cole EB; Lakkaraju PS; Rampulla DM; Morris AJ; Abelev E; Bocarsly AB
    J Am Chem Soc; 2010 Aug; 132(33):11539-51. PubMed ID: 20666494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical reduction of carbon dioxide to formate with Fe-C electrodes in anaerobic sludge digestion process.
    Zhao Z; Zhang Y; Li Y; Zhao H; Quan X
    Water Res; 2016 Dec; 106():339-343. PubMed ID: 27750122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow.
    Yoshimoto M; Yamashita T; Yamashiro T
    Biotechnol Prog; 2010; 26(4):1047-53. PubMed ID: 20730761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The redox combustion of carbon monoxide for recovering pure carbon dioxide by using molten (Na+,K+)2(CO32-,SO42-) mixtures.
    Shimano S; Asakura S
    Chemosphere; 2006 Jun; 63(10):1641-7. PubMed ID: 16337672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction pathways of glucose oxidation by ozone under acidic conditions.
    Marcq O; Barbe JM; Trichet A; Guilard R
    Carbohydr Res; 2009 Jul; 344(11):1303-10. PubMed ID: 19524217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.
    Vo T; Purohit K; Nguyen C; Biggs B; Mayoral S; Haan JL
    ChemSusChem; 2015 Nov; 8(22):3853-8. PubMed ID: 26510492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular approaches to the electrochemical reduction of carbon dioxide.
    Finn C; Schnittger S; Yellowlees LJ; Love JB
    Chem Commun (Camb); 2012 Feb; 48(10):1392-9. PubMed ID: 22116300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of activated carbon by waste tire thermochemical degradation with CO2.
    Betancur M; Martínez JD; Murillo R
    J Hazard Mater; 2009 Sep; 168(2-3):882-7. PubMed ID: 19398156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme.
    Reda T; Plugge CM; Abram NJ; Hirst J
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10654-8. PubMed ID: 18667702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient nickel catalyst for the reduction of carbon dioxide with a borane.
    Chakraborty S; Zhang J; Krause JA; Guan H
    J Am Chem Soc; 2010 Jul; 132(26):8872-3. PubMed ID: 20540579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of CO2 in cobalt-catalyzed peroxidations.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 2005 Jul; 439(1):99-104. PubMed ID: 15946639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).
    Srikanth S; Maesen M; Dominguez-Benetton X; Vanbroekhoven K; Pant D
    Bioresour Technol; 2014 Aug; 165():350-4. PubMed ID: 24565874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous CO(2) evolution from oxidation of aromatic carbon-based materials.
    Orrego JF; Zapata F; Truong TN; Mondragón F
    J Phys Chem A; 2009 Jul; 113(29):8415-20. PubMed ID: 19569663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Destruction of EDTA using Ce(IV) mediated electrochemical oxidation: a simple modeling study and experimental verification.
    Lee JW; Chung SJ; Balaji S; Kokovkin VV; Moon IS
    Chemosphere; 2007 Jun; 68(6):1067-73. PubMed ID: 17363029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Reduction of Carbon Dioxide to Value-Added Products: The Electrocatalyst and Microbial Electrosynthesis.
    Chen Z; Wang X; Liu L
    Chem Rec; 2019 Jul; 19(7):1272-1282. PubMed ID: 30298975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.