BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18702171)

  • 1. Non-bioengineered silk fibroin protein 3D scaffolds for potential biotechnological and tissue engineering applications.
    Mandal BB; Kundu SC
    Macromol Biosci; 2008 Sep; 8(9):807-18. PubMed ID: 18702171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin.
    Kim UJ; Park J; Kim HJ; Wada M; Kaplan DL
    Biomaterials; 2005 May; 26(15):2775-85. PubMed ID: 15585282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds.
    Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J
    J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous 3-D scaffolds from regenerated silk fibroin.
    Nazarov R; Jin HJ; Kaplan DL
    Biomacromolecules; 2004; 5(3):718-26. PubMed ID: 15132652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds.
    Lu Q; Zhang S; Hu K; Feng Q; Cao C; Cui F
    Biomaterials; 2007 May; 28(14):2306-13. PubMed ID: 17292467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth.
    Gupta MK; Khokhar SK; Phillips DM; Sowards LA; Drummy LF; Kadakia MP; Naik RR
    Langmuir; 2007 Jan; 23(3):1315-9. PubMed ID: 17241052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL
    Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique.
    Lv Q; Feng Q
    J Mater Sci Mater Med; 2006 Dec; 17(12):1349-56. PubMed ID: 17143767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells.
    Unger RE; Peters K; Wolf M; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2004 Sep; 25(21):5137-46. PubMed ID: 15109837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface properties of silk fibroin films and their interaction with fibroblasts.
    Servoli E; Maniglio D; Motta A; Predazzer R; Migliaresi C
    Macromol Biosci; 2005 Dec; 5(12):1175-83. PubMed ID: 16315185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different fabrication techniques used for processing 3-dimensional, porous, biodegradable scaffolds from modified starch for bone tissue engineering.
    Kunjachan V; Subramanian A; Hanna M; Guan JJ
    Biomed Sci Instrum; 2004; 40():129-35. PubMed ID: 15133947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress of silk fibroin in the cell scaffold of tissue engineering].
    Tian L; Min S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1375-8. PubMed ID: 17228748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration.
    Gobin AS; Froude VE; Mathur AB
    J Biomed Mater Res A; 2005 Sep; 74(3):465-73. PubMed ID: 15983992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide).
    Jin HJ; Park J; Valluzzi R; Cebe P; Kaplan DL
    Biomacromolecules; 2004; 5(3):711-7. PubMed ID: 15132651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials.
    Fuchs S; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2006 Nov; 27(31):5399-408. PubMed ID: 16837042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for dissolution and stabilization of non-mulberry silk gland protein fibroin using anionic surfactant sodium dodecyl sulfate.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Apr; 99(6):1482-9. PubMed ID: 17969177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.