These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 18702291)

  • 1. Microbial community profiling and characterization of some heterotrophic bacterial isolates from river waters and shallow groundwater wells along the Rouge River, southeast Michigan.
    Tiquia SM; Schleibak M; Schlaff J; Floyd C; Benipal B; Zakhem E; Murray KS
    Environ Technol; 2008 Jun; 29(6):651-63. PubMed ID: 18702291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halophilic and halotolerant bacteria from river waters and shallow groundwater along the Rouge River of southeastern Michigan.
    Tiquia SM; Davis D; Hadid H; Kasparian S; Ismail M; Sahly R; Shim J; Singh S; Murray KS
    Environ Technol; 2007 Mar; 28(3):297-307. PubMed ID: 17432382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic diversity of the heterotrophic microorganisms and potential link to pollution of the Rouge River.
    Tiquia SM
    Environ Pollut; 2010 May; 158(5):1435-43. PubMed ID: 20106574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial resistance of heterotrophic bacteria in sewage-contaminated rivers.
    Garcia-Armisen T; Vercammen K; Passerat J; Triest D; Servais P; Cornelis P
    Water Res; 2011 Jan; 45(2):788-96. PubMed ID: 20870262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular hydrolytic enzyme activities of the heterotrophic microbial communities of the Rouge River: an approach to evaluate ecosystem response to urbanization.
    Tiquia SM
    Microb Ecol; 2011 Oct; 62(3):679-89. PubMed ID: 21611688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrofilamentous microbial communities in the metal-rich and acidic River Tinto, Spain.
    López-Archilla AI; Gérard E; Moreira D; López-García P
    FEMS Microbiol Lett; 2004 Jun; 235(2):221-8. PubMed ID: 15183867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor.
    Stern N; Ginder-Vogel M; Stegen JC; Arntzen E; Kennedy DW; Larget BR; Roden EE
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation.
    Miller TR; Franklin MP; Halden RU
    FEMS Microbiol Ecol; 2007 May; 60(2):299-311. PubMed ID: 17386036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Reduction of Fe(III) and SO
    Lee JH; Lee BJ
    Microb Ecol; 2018 Jul; 76(1):182-191. PubMed ID: 29177753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Bacterial community structure and diversity in a cold sulfur spring in Xinjiang faulting zone].
    Li H; Zeng J; Gao X; Yang H; Zhang T; Yang X; Sun J; Lou K
    Wei Sheng Wu Xue Bao; 2011 May; 51(5):595-602. PubMed ID: 21800620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon utilization profiles of river bacterial strains facing sole carbon sources suggest metabolic interactions.
    Goetghebuer L; Servais P; George IF
    FEMS Microbiol Lett; 2017 May; 364(10):. PubMed ID: 28498939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High benzene concentrations can favour Gram-positive bacteria in groundwaters from a contaminated aquifer.
    Fahy A; Ball AS; Lethbridge G; McGenity TJ; Timmis KN
    FEMS Microbiol Ecol; 2008 Sep; 65(3):526-33. PubMed ID: 18540887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of bacterial communities in diverse freshwater habitats.
    Aizenberg-Gershtein Y; Vaizel-Ohayon D; Halpern M
    Can J Microbiol; 2012 Mar; 58(3):326-35. PubMed ID: 22339347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater.
    Cho K; Zholi A; Frabutt D; Flood M; Floyd D; Tiquia SM
    Environ Technol; 2012; 33(13-15):1629-40. PubMed ID: 22988623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Culturable microbes in shallow groundwater underlying ornithogenic soil of Cape Hallett, Antarctica.
    Aislabie J; Ryburn J; Sarmah A
    Can J Microbiol; 2009 Jan; 55(1):12-20. PubMed ID: 19190697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica.
    Sanyal A; Antony R; Samui G; Thamban M
    Microbiol Res; 2018 Mar; 208():32-42. PubMed ID: 29551210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt-adapted bacteria isolated from the Rouge River and potential for degradation of contaminants and biotechnological applications.
    Tiquia SM
    Environ Technol; 2010; 31(8-9):967-78. PubMed ID: 20662385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carbon addition and predation on acetate-assimilating bacterial cells in groundwater.
    Longnecker K; Da Costa A; Bhatia M; Kujawinski EB
    FEMS Microbiol Ecol; 2009 Dec; 70(3):456-70. PubMed ID: 19744236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy).
    Davolos D; Pietrangeli B
    Ecotoxicol Environ Saf; 2013 Oct; 96():1-9. PubMed ID: 23870163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays.
    Ros M; Goberna M; Pascual JA; Klammer S; Insam H
    J Microbiol Methods; 2008 Mar; 72(3):221-6. PubMed ID: 18258321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.