BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18702503)

  • 1. Inhibition of serine beta-lactamases by vanadate-catechol complexes.
    Adediran SA; Pratt RF
    Biochemistry; 2008 Sep; 47(36):9467-74. PubMed ID: 18702503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates.
    Nagarajan R; Pratt RF
    Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of serine amidohydrolases by complexes of vanadate with hydroxamic acids.
    Bell JH; Curley K; Pratt RF
    Biochem Biophys Res Commun; 2000 Aug; 274(3):732-5. PubMed ID: 10924345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of inhibition of the beta-lactamase of Enterobacter cloacae P99 by 1:1 complexes of vanadate with hydroxamic acids.
    Bell JH; Pratt RF
    Biochemistry; 2002 Apr; 41(13):4329-38. PubMed ID: 11914079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-ketophosphonates as beta-lactamase inhibitors: Intramolecular cooperativity between the hydrophobic subsites of a class D beta-lactamase.
    Perumal SK; Adediran SA; Pratt RF
    Bioorg Med Chem; 2008 Jul; 16(14):6987-94. PubMed ID: 18572409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates.
    Kaur K; Adediran SA; Lan MJ; Pratt RF
    Biochemistry; 2003 Feb; 42(6):1529-36. PubMed ID: 12578365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99.
    Adediran SA; Zhang Z; Nukaga M; Palzkill T; Pratt RF
    Biochemistry; 2005 May; 44(20):7543-52. PubMed ID: 15895997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of class A and class C beta-lactamases by penems: crystallographic structures of a novel 1,4-thiazepine intermediate.
    Nukaga M; Abe T; Venkatesan AM; Mansour TS; Bonomo RA; Knox JR
    Biochemistry; 2003 Nov; 42(45):13152-9. PubMed ID: 14609325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design.
    Usher KC; Blaszczak LC; Weston GS; Shoichet BK; Remington SJ
    Biochemistry; 1998 Nov; 37(46):16082-92. PubMed ID: 9819201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of class D beta-lactamases by diaroyl phosphates.
    Majumdar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2005 Dec; 44(49):16121-9. PubMed ID: 16331972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular modeling of Henry-Michaelis and acyl-enzyme complexes between imipenem and Enterobacter cloacae P99 beta-lactamase.
    Fenollar-Ferrer C; Donoso J; Frau J; Muñoz F
    Chem Biodivers; 2005 May; 2(5):645-56. PubMed ID: 17192008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases.
    Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI
    J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases.
    Mustafi D; Hofer JE; Huang W; Palzkill T; Makinen MW
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1279-89. PubMed ID: 15134725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic nanoparticles bioassay for Enterobacter cloacae P99 beta-lactamase activity and inhibitor screening.
    Liu R; Teo W; Tan S; Feng H; Padmanabhan P; Xing B
    Analyst; 2010 May; 135(5):1031-6. PubMed ID: 20419253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4-Substituted trinems as broad spectrum beta-lactamase inhibitors: structure-based design, synthesis, and biological activity.
    Plantan I; Selic L; Mesar T; Anderluh PS; Oblak M; Prezelj A; Hesse L; Andrejasic M; Vilar M; Turk D; Kocijan A; Prevec T; Vilfan G; Kocjan D; Copar A; Urleb U; Solmajer T
    J Med Chem; 2007 Aug; 50(17):4113-21. PubMed ID: 17665896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relative catalytic efficiency of beta-lactamase catalyzed acyl and phosphyl transfer.
    Slater MJ; Laws AP; Page MI
    Bioorg Chem; 2001 Apr; 29(2):77-95. PubMed ID: 11300697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic study of two novel enantiomeric tricyclic beta-lactams which efficiently inactivate class C beta-lactamases.
    Vilar M; Galleni M; Solmajer T; Turk B; Frère JM; Matagne A
    Antimicrob Agents Chemother; 2001 Aug; 45(8):2215-23. PubMed ID: 11451677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue.
    Aureliano M; Henao F; Tiago T; Duarte RO; Moura JJ; Baruah B; Crans DC
    Inorg Chem; 2008 Jul; 47(13):5677-84. PubMed ID: 18510311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and structural consequences of the leaving group in substrates of a class C beta-lactamase.
    Ahn YM; Pratt RF
    Bioorg Med Chem; 2004 Mar; 12(6):1537-42. PubMed ID: 15018927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O-aryloxycarbonyl hydroxamates: new beta-lactamase inhibitors that cross-link the active site.
    Wyrembak PN; Babaoglu K; Pelto RB; Shoichet BK; Pratt RF
    J Am Chem Soc; 2007 Aug; 129(31):9548-9. PubMed ID: 17628063
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.