BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 18702689)

  • 21. 5-HT innervation of reticulospinal neurons and other brainstem structures in lamprey.
    Di Prisco GV; Dubuc R; Grillner S
    J Comp Neurol; 1994 Apr; 342(1):23-34. PubMed ID: 7515906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glial-toxin-mediated disruption of spinal cord locomotor network function and its modulation by 5-HT.
    Baudoux S; Parker D
    Neuroscience; 2008 Jun; 153(4):1332-43. PubMed ID: 18440149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anatomical and physiological study of brainstem nuclei relaying dorsal column inputs in lampreys.
    Dubuc R; Bongianni F; Ohta Y; Grillner S
    J Comp Neurol; 1993 Jan; 327(2):260-70. PubMed ID: 8381144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region.
    Brocard F; Dubuc R
    J Neurophysiol; 2003 Sep; 90(3):1714-27. PubMed ID: 12736238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey.
    Ohta Y; Grillner S
    J Neurophysiol; 1989 Nov; 62(5):1079-89. PubMed ID: 2555456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological and neuropharmacological study of tectoreticular pathways in lampreys.
    Zompa IC; Dubuc R
    Brain Res; 1998 Sep; 804(2):238-52. PubMed ID: 9757053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N-methyl-D-aspartate-dependent long-term potentiation of excitatory transmission in trigeminal subnucleus oralis.
    Youn DH
    Neuroreport; 2008 May; 19(7):733-8. PubMed ID: 18418248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mesencephalic relay for visual inputs to reticulospinal neurones in lampreys.
    Zompa IC; Dubuc R
    Brain Res; 1996 Apr; 718(1-2):221-7. PubMed ID: 8773792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord.
    Wang D; Grillner S; Wallén P
    Neuropharmacology; 2006 Nov; 51(6):1038-46. PubMed ID: 16919683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Presynaptic and interactive peptidergic modulation of reticulospinal synaptic inputs in the lamprey.
    Parker D
    J Neurophysiol; 2000 May; 83(5):2497-507. PubMed ID: 10805651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of serotonin on the glutamate-induced excitations of secondary vestibular neurons in the rat.
    Li Volsi G; Licata F; Fretto G; Mauro MD; Santangelo F
    Exp Neurol; 2001 Dec; 172(2):446-59. PubMed ID: 11716569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of AMPA receptor desensitization and the side effects of a DMSO vehicle on reticulospinal EPSPs and locomotor activity.
    Tsvyetlynska NA; Hill RH; Grillner S
    J Neurophysiol; 2005 Dec; 94(6):3951-60. PubMed ID: 16107533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons.
    Suzuki T; Kodama S; Hoshino C; Izumi T; Miyakawa H
    Eur J Neurosci; 2008 Aug; 28(3):521-34. PubMed ID: 18702724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xenon attenuates excitatory synaptic transmission in the rodent prefrontal cortex and spinal cord dorsal horn.
    Haseneder R; Kratzer S; Kochs E; Mattusch C; Eder M; Rammes G
    Anesthesiology; 2009 Dec; 111(6):1297-307. PubMed ID: 19934875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Presynaptic and postsynaptic modulation of glutamatergic synaptic transmission by activation of alpha(1)- and beta-adrenoceptors in layer V pyramidal neurons of rat cerebral cortex.
    Kobayashi M; Kojima M; Koyanagi Y; Adachi K; Imamura K; Koshikawa N
    Synapse; 2009 Apr; 63(4):269-81. PubMed ID: 19116948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trigeminal inputs to reticulospinal neurones in lampreys are mediated by excitatory and inhibitory amino acids.
    Viana Di Prisco G; Ohta Y; Bongianni F; Grillner S; Dubuc R
    Brain Res; 1995 Oct; 695(1):76-80. PubMed ID: 8574651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silent synapses onto interneurons in the rat CA1 stratum radiatum.
    Riebe I; Gustafsson B; Hanse E
    Eur J Neurosci; 2009 May; 29(9):1870-82. PubMed ID: 19473239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential response dynamics of corticothalamic glutamatergic synapses in the lateral geniculate nucleus and thalamic reticular nucleus.
    Alexander GM; Fisher TL; Godwin DW
    Neuroscience; 2006; 137(2):367-72. PubMed ID: 16360282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xenon reduces N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission in the amygdala.
    Haseneder R; Kratzer S; Kochs E; Eckle VS; Zieglgänsberger W; Rammes G
    Anesthesiology; 2008 Dec; 109(6):998-1006. PubMed ID: 19034096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.