BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18702868)

  • 1. Following multi-component reactions in liquid medium using spectral band-fitting techniques.
    Costa L; Brissos V; Lemos F; Ramôa Ribeiro F; Cabral JM
    Appl Spectrosc; 2008 Aug; 62(8):932-5. PubMed ID: 18702868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the effect of immobilization methods on the activity of lipase biocatalysts in ester hydrolysis.
    Costa L; Brissos V; Lemos F; Ribeiro FR; Cabral JM
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):323-7. PubMed ID: 17940805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the thermal stability of lipases through mutagenesis and immobilization on zeolites.
    Costa L; Brissos V; Lemos F; Ribeiro FR; Cabral JM
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):53-61. PubMed ID: 18443829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of immobilization support, water activity, and enzyme ionization state on cutinase activity and enantioselectivity in organic media.
    Vidinha P; Harper N; Micaelo NM; Lourenco NM; da Silva MD; Cabral JM; Afonso CA; Soares CM; Barreiros S
    Biotechnol Bioeng; 2004 Feb; 85(4):442-9. PubMed ID: 14755562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sol-gel encapsulation: an efficient and versatile immobilization technique for cutinase in non-aqueous media.
    Vidinha P; Augusto V; Almeida M; Fonseca I; Fidalgo A; Ilharco L; Cabral JM; Barreiros S
    J Biotechnol; 2006 Jan; 121(1):23-33. PubMed ID: 16095741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the microenvironment of sol-gel entrapped cutinase: the role of added zeolite NaY.
    Vidinha P; Augusto V; Nunes J; Lima JC; Cabral JM; Barreiros S
    J Biotechnol; 2008 Jun; 135(2):181-9. PubMed ID: 18490069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi.
    Nimchua T; Punnapayak H; Zimmermann W
    Biotechnol J; 2007 Mar; 2(3):361-4. PubMed ID: 17136729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone dynamics of Fusarium solani pisi cutinase probed by nuclear magnetic resonance: the lack of interfacial activation revisited.
    Prompers JJ; Groenewegen A; Hilbers CW; Pepermans HA
    Biochemistry; 1999 Apr; 38(17):5315-27. PubMed ID: 10220318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic surface modification of poly(ethylene terephthalate).
    Vertommen MA; Nierstrasz VA; Veer Mv; Warmoeskerken MM
    J Biotechnol; 2005 Dec; 120(4):376-86. PubMed ID: 16115695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Fusarium solani f. sp. pisi cutinase in Fusarium venenatum A3/5.
    Sørensen JD; Petersen EI; Wiebe MG
    Biotechnol Lett; 2007 Aug; 29(8):1227-32. PubMed ID: 17505784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.
    Badenes SM; Lemos F; Cabral JM
    Biotechnol Lett; 2010 Mar; 32(3):399-403. PubMed ID: 19943181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase from Fusarium solani pisi.
    Ruiu L; Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2006; 19(4):372-8. PubMed ID: 16779873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR studies of Fusarium solani pisi cutinase in complex with phosphonate inhibitors.
    Prompers JJ; van Noorloos B; Mannesse ML; Groenewegen A; Egmond MR; Verheij HM; Hilbers CW; Pepermans HA
    Biochemistry; 1999 May; 38(19):5982-94. PubMed ID: 10320324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of bacterial cutinase.
    Chen S; Tong X; Woodard RW; Du G; Wu J; Chen J
    J Biol Chem; 2008 Sep; 283(38):25854-62. PubMed ID: 18658138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation of cutinase adsorbed onto PMMA nanoparticles probed by tryptophan fluorescence.
    Santos AM; Fedorov A; Martinho JM; Baptista RP; Taipa MA; Cabral JM
    J Phys Chem B; 2008 Mar; 112(12):3581-5. PubMed ID: 18311968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi.
    Alisch-Mark M; Herrmann A; Zimmermann W
    Biotechnol Lett; 2006 May; 28(10):681-5. PubMed ID: 16791721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A heterogeneous kinetic model for the cutinase-catalyzed hydrolysis of cyclo-tris-ethylene terephthalate.
    Figueroa Y; Hinks D; Montero G
    Biotechnol Prog; 2006; 22(4):1209-14. PubMed ID: 16889400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase.
    Matamá T; Vaz F; Gübitz GM; Cavaco-Paulo A
    Biotechnol J; 2006; 1(7-8):842-9. PubMed ID: 16927260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical resolution system for DL-pantoyl lactone using the lactonase from Fusarium oxysporum.
    Sakamoto K; Honda K; Wada K; Kita S; Tsuzaki K; Nose H; Kataoka M; Shimizu S
    J Biotechnol; 2005 Jul; 118(1):99-106. PubMed ID: 15935504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis.
    Brissos V; Eggert T; Cabral JM; Jaeger KE
    Protein Eng Des Sel; 2008 Jun; 21(6):387-93. PubMed ID: 18424821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.